张 楠,徐贝贝,王建军
精氨酸激酶基因研究进展
张 楠,徐贝贝,王建军*
(扬州大学园艺与植物保护学院,江苏扬州 225009)
磷酸原激酶(PKs)在细胞能量代谢过程中起着关键作用,其中在无脊椎动物、原生动物和细菌中普遍存在的精氨酸激酶(AKs)已成为开发新型高选择性杀虫剂的潜在靶标。本文从精氨酸激酶基因的表达及其调控、分子进化与功能以及精氨酸激酶基因在害虫防治中的应用等几个方面介绍了国内外有关精氨酸激酶基因的研究进展。
精氨酸激酶;基因表达及其调控;分子进化与功能;害虫防治
精氨酸激酶(Arginine Kinase,AK)属于磷酸原激酶(胍基激酶)家族。磷酸原激酶可逆催化ATP的γ-磷酸基团转移到生物体内天然存在的一类胍基化合物上生成ADP和磷酸化胍基化合物,后者贮存高能磷酸键而被称为磷酸原。根据催化反应中胍基化合物底物的不同,磷酸原激酶可分为肌酸激酶(CK)、精氨酸激酶(AK)、胍基乙酸激酶(GK)、胍乙基磷酸丝氨酸激酶(LK)、脒基牛磺激酶(TK)、脒基亚牛磺酸激酶(HTK)、胍基乙基甲基磷酸激酶(OK)等7类(Ellington, 2001; Udaetal., 2006; Suzukietal., 2009),其中肌酸激酶主要存在于脊椎动物中,而精氨酸激酶的分布最为广泛,已经在包括节肢动物、软体动物、腔肠动物和多孔动物在内的无脊椎动物以及纤毛虫、锥虫、领鞭毛虫等原生动物和细菌中发现精氨酸激酶活性(Udaetal., 2006; Andrewsetal., 2008; Conejoetal., 2008; Suzukietal., 2013; Pereira, 2014)。由于精氨酸激酶不存在于哺乳动物中并且是昆虫体内唯一存在的磷酸原激酶,精氨酸激酶已成为开发新型高选择性杀虫剂的潜在靶标(Brown and Grossman, 2004; Wuetal., 2007; Zhaoetal., 2008; Liuetal., 2015),近年来对昆虫精氨酸激酶的研究也正逐渐深入。本文从精氨酸激酶基因的表达及其调控、分子进化与功能以及精氨酸激酶基因在害虫防治中的应用等几个方面介绍了国内外有关精氨酸激酶基因的研究进展。
对昆虫和其它无脊椎动物精氨酸激酶组织分布的研究表明,精氨酸激酶主要分布于代谢旺盛和大量需能的组织中。在飞蝗Locustamigratoria的飞行肌中,精氨酸激酶和磷酸精氨酸起暂时能量缓冲库的作用,与5龄幼虫相比,成虫飞行肌精氨酸激酶活性提高了10倍;与静止状态相比,成虫飞行1 min后飞行肌磷酸精氨酸含量降低了40%(Schneideretal., 1989)。在黑腹果蝇Drosophilamelanogaster3龄幼虫中,精氨酸激酶在体壁肌肉和消化道中活性最高,分别占总活性的73.8%和18.5%(James and Collier, 1990)。对意大利蜜蜂Apismellifera的Northern杂交分析发现,精氨酸激酶基因在具有高能量需求的复眼组织中的表达水平最高,是头部的2-3倍,其次为触角,在卵巢中的表达水平最低(Kucharski and Maleszka, 1998)。对入侵红火蚁Solenopsisinvicta的研究发现,精氨酸激酶基因的表达水平和酶活性在有翅雌蚁头部和工蚁头部、胸部以及有翅雄蚁的腹部组织最高(Wangetal., 2009)。在家蚕Bombyxmori5龄幼虫中,精氨酸激酶基因在腹足、脂肪体、马氏管、中肠的表达水平相对较高(王华兵和徐豫松,2006;Kangetal., 2011)。在棉铃虫Helicoverpaarmigera5龄幼虫中,精氨酸激酶基因在中肠的表达水平最高(Qietal., 2015)。此外,对凡纳滨对虾Litopenaeusvannamei和罗氏沼虾Macrobrachiumrosenbergii的研究发现,精氨酸激酶基因在肌肉的表达水平最高(Yaoetal., 2009; Arockiarajetal., 2011)。
近年来,分子生物学技术的发展推动了昆虫精氨酸激酶基因的研究。自从1998年从南美沙漠蝗Schistocercaamericana克隆得到首个昆虫精氨酸激酶基因cDNA序列(Wangetal., 1998)以来,至今已经从鳞翅目、双翅目等昆虫中克隆了超过40个精氨酸激酶基因的全长或者片段cDNAs(Chenetal., 2015),但关于昆虫精氨酸激酶基因的表达调控机制还知之甚少。对黑腹果蝇的研究发现,黑腹果蝇精氨酸激酶活性随发育阶段的变化规律与蜕皮激素滴度一致,都是在预蛹期达到高峰,蛹期下降,在成虫羽化时达到第二个高峰。将温度敏感性蜕皮激素缺失突变型ecd-1的3龄中期幼虫置于29℃没有观察到预蛹期高峰,但饲喂20-羟基蜕皮酮后,精氨酸激酶活性再次在预蛹期达到高峰(James and Collier, 1990)。利用半定量PCR对家蚕精氨酸激酶基因BmAK在幼虫和蛹期脂肪体的表达模式分析发现,BmAK基因的表达量变化趋势与蜕皮激素分泌趋势相一致(王华兵和徐豫松,2006)。利用荧光定量PCR对烟夜蛾Helicoverpaassulta的HassAK基因在不同发育时期脂肪体中的相对表达量的研究发现,HassAK基因也是在预蛹期的表达水平最高(张元臣等,2011)。这些研究表明,昆虫精氨酸激酶基因的表达可能受蜕皮激素信号通路的调控。
一般认为,在无脊椎动物和原生动物体内只存在一种精氨酸激酶基因,精氨酸激酶在磷酸原激酶进化早期从共同的祖先进化而来,但近年来的一些发现改变了对精氨酸激酶的这种传统认识。例如,在大豆孢囊线虫Heteroderaglycines基因组中发现存在2个组成型表达的精氨酸激酶基因Hg-AK1 和Hg-AK2,编码的360和407个氨基酸具有77%一致性,预测2种精氨酸激酶分子量分别为40和46 kDa(Matthewsetal., 2003)。在环节动物印度光缨虫Sabellastarteindica基因组中也发现存在2种精氨酸激酶基因AK1和AK2,分别编码371和377个氨基酸残基,其中AK1可催化精氨酸、脒基牛磺酸和胍乙基磷酸丝氨酸多种胍基化合物的磷酸化,而AK2的磷酸原底物主要是L-精氨酸和D-精氨酸。系统发生分析表明,印度光缨虫AK1和AK2可能从肌酸激酶进化而来(Uda and Suzuki, 2007)。对多齿新米虾Neocaridinadenticulate精氨酸激酶AK1、AK2和AK3的系统发生分析发现,AK2与典型的精氨酸激酶聚为一个支系,而AK1和AK3聚为一个独立的支系(Iwanamietal., 2009)。在布氏锥虫Trypanosomabrucei基因组中也发现存在3种在核苷酸水平具有高度一致性(>85%)的精氨酸激酶基因(TbAK1-3),其中,TbAK1主要分布于鞭毛,TbAK2和TbAK3则分别分布于糖酵解酶体和细胞质(Vonckenetal., 2013)。在梨形四膜虫TetrahymenaPyriformis基因组中发现存在2种分子量分别为40 kDa和80 kDa的精氨酸激酶AK1和AK2,其中AK2的结构域1和AK1在氨基酸水平具有57%的一致性,推测具有双结构域结构的AK2来源于AK1的基因复制-融合事件(Michibataetal., 2014)。这些研究表明,在磷酸原激酶长期进化过程中,精氨酸激酶可能经历了多次进化事件。
在昆虫研究方面,对多种昆虫基因组数据库的分析发现,在冈比亚按蚊Anophelesgambiae、埃及伊蚊Aedesaegypti和意大利蜜蜂基因组中存在2种精氨酸激酶基因(Udaetal., 2006; Tanakaetal., 2007)。系统发生分析表明,昆虫精氨酸激酶基因可分为群1(AK group 1)和群2(AK group 2),其中群1由典型的昆虫精氨酸激酶组成,而群2精氨酸激酶比群1精氨酸激酶在氨基端多出15-27个氨基酸残基(Udaetal., 2006; Tanakaetal., 2007)。最近在猫栉首蚤Ctenocephalidesfelis基因组中也发现存在2种精氨酸激酶基因CfAK1和CfAK2,两者在氨基酸水平具有88.5%的序列一致性,但两者都位于群1,并且在成虫期主要表达CfAK1(Werretal., 2009)。
精氨酸激酶除了可以直接调节ATP能量库的平衡、参与细胞能量代谢外,在无脊椎动物和原生动物适应逆境胁迫和先天免疫反应过程中也具有重要作用。在缺乏磷酸原激酶/磷酸原系统的酿酒酵母Saccharomycescerevisiae中功能表达的精氨酸激酶提高了酿酒酵母对短暂的pH值降低和饥饿的抵抗力(Canonacoetal., 2002)。盐度是海洋动物生存环境中的一个重要因子,盐度改变引起渗透压的变化可导致海洋动物代谢失调而死亡。蓝蟹Callinectessapidus、日本大眼蟹Macrophthalmusjaponicus和斑节对虾Penaeusmonodon在接触低盐度后,体内精氨酸激酶基因的表达水平都显著上升(Kinsey and Lee, 2003; Shekharetal., 2013; Nikapitiyaetal., 2014)。氧化应激反应可消耗大量的ATP并最终导致ATP耗竭(Tiwarietal., 2002; Agalakova and Gusev, 2012)。克氏锥虫Trypanosomacruzi在用产生氧化胁迫的化合物过氧化氢和抗锥虫药硝呋噻氧处理后,精氨酸激酶基因表达量分别上升超过10倍和2倍(Mirandaetal., 2006)。通过RNA干扰沉默精氨酸激酶基因后,布氏锥虫细胞系对过氧化氢的敏感性提高了400多倍(Vonckenetal., 2013)。应用mRNA差异显示技术和蛋白质组学技术的分析发现,南美兰对虾Penaeusstylirostris和南美白对虾Penaeusvannamei在分别感染白斑病毒(white spot virus,WSV)和黄头病毒(yellow head virus,YHV)后,体内精氨酸激酶基因表达量显著提高(Astrofskyetal., 2002; Rattanarojpongetal., 2007)。
在昆虫研究方面,Kang等人(2011)通过荧光定量PCR和Western印迹分析了3个家蚕品系4龄幼虫在接种核型多角体病毒(NPV)24 h后中肠精氨酸激酶基因表达情况,发现抗NPV家蚕品系NB和BC8的精氨酸激酶基因相对表达水平显著高于对NPV敏感的家蚕品系306(>10倍),表明精氨酸激酶可能参与了家蚕幼虫抵抗NPV侵染过程。分别应用二维电泳和基因芯片技术研究发现,阿布拉小蜂Aphidiuscolemani和北极棘跳虫Megaphoruraarctica在变温处理后,精氨酸激酶基因的表达水平显著上调(Colinetetal., 2007; Clarketal., 2009)。对烟夜蛾5龄幼虫分别高低温处理发现,在28℃-38℃范围内脂肪体精氨酸激酶基因HassAK表达量随着温度的升高而逐步增加;4℃低温处理0-2 h,脂肪体HassAK表达量随低温处理时间的延长而增加,表明高温和低温均可诱导HassAK基因的表达,该基因可能参与昆虫抵御外界不良环境(张元臣等,2011)。应用RNA干扰技术沉默褐飞虱Nilaparvatalugens的精氨酸激酶基因后,褐飞虱成虫在40℃高温处理后的致死中时显著缩短(Geetal., 2013)。最近应用荧光定量PCR和Western印迹结合酶活性分析对中华蜜蜂Apiscerana精氨酸激酶基因AccAK的研究发现,在用氯化镉、吡丙醚、辛硫磷、百草枯、高温(42℃)、低温(4℃)、过氧化氢和维生素C等非生物胁迫因子分别处理15日龄成虫以及用蜜蜂球囊菌Ascosphaeraapis等生物胁迫因子处理4龄幼虫后,AccAK基因的表达水平都显著上调(Chenetal., 2015)。
目前,化学农药的抗性和残留问题越来越突出,寻求高选择性的杀虫剂作用靶标和开发新的害虫防治技术具有重要的意义。精氨酸激酶在细胞能量代谢过程中起着重要作用,在无脊椎动物体内,精氨酸激酶是唯一有效的磷酸原激酶,因此抑制精氨酸激酶的活性便可阻碍能量代谢。对从美洲大蠊Periplanetaamericana提纯的精氨酸激酶的抑制动力学研究发现,D-精氨酸、硝酸盐和硼酸盐能够抑制精氨酸激酶的活性,可以作为精氨酸激酶的竞争性或者非竞争性抑制剂用于蜚蠊的防治(Brown and Grossman, 2004)。芸香苷对东亚飞蝗Locustamigratoriamanilensis精氨酸激酶也具有较强的抑制作用(Wuetal., 2009)。但这些精氨酸激酶抑制剂在害虫田间防治中的应用效果尚有待进一步研究。
RNA干扰(RNA interference,RNAi)导致的靶标基因沉默可以影响昆虫的生长发育,产生致死表型。目前,通过饲喂表达dsRNA的作物来沉默特定基因进而控制害虫的防治策略正逐渐被人们接受。在用3.20 ng/mL的黄曲条跳甲Phyllotretastriolata的PsAK特异性dsRNA饲喂成虫14 d后,90%成虫死亡,在用0.05 ng/mL至1.60 ng/mL的系列浓度处理后,产卵量和卵孵化率都显著降低(Zhaoetal., 2008)。将表达棉铃虫Helicoverpaarmigera的HaAK基因dsRNA的拟南芥叶片饲喂棉铃虫1龄幼虫3 d后死亡率达到55%(Liuetal., 2015)。最近,在利用RNAi技术降低家蝇Muscadomestica幼虫精氨酸激酶基因的表达水平后发现,家蝇生长发育受到显著影响,第6天家蝇的死亡率达到80%以上(于雪等,2015)。
由于只参与无脊椎动物能量代谢,精氨酸激酶有望成为对人和其他哺乳动物安全的新型杀虫剂作用靶标,但目前国内外关于昆虫精氨酸激酶的研究还主要集中于分子克隆、体外表达和逆境胁迫下的mRNA表达水平分析等方面。今后有必要对昆虫群1和群2的精氨酸激酶基因的功能和表达调控机制进行比较分析,同时进一步开展以精氨酸激酶为作用靶标的新型高选择性杀虫剂的开发以及利用表达精氨酸激酶基因dsRNA的转基因作物控制害虫方面的研究工作。
References)
Agalakova NI, Gusev GP.Fluoride induces oxidative stress and ATP depletion in therat erythrocytesinvitro[J].EnvironmentalToxicologyandPharmacology, 2012, 34 (2): 334-337.
Andrews LD, Graham J, Snider MJ,etal.Characterization of a novel bacterial arginine kinase fromDesulfotaleapsychrophila[J].ComparativeBiochemistryandPhysiologyB:ComparativeBiochemistry, 2008, 150 (3): 312-319.
Arockiaraj J, Vanaraja P, Easwvaran S,etal.Gene profiling and characterization of arginine kinase-1 (MrAK-1) from freshwater giant prawn (Macrobrachiumrosenbergii) [J].FishandShellfishImmunology, 2011, 31 (1):81-89.
Astrofsky KM, Roux MM, Klimpel KR,etal.Isolation of differentially expressed genes from white spot virus (WSV) infected Pacific blue shrimp (Penaeusstylirostris) [J].ArchivesofVirology, 2002, 147 (9): 1799-1812.
Brown AE, Grossman SH.The mechanism and modes of inhibition of arginine kinase from the cockroach (Periplanetaamericana) [J].ArchivesofInsectBiochemistryandPhysiology, 2004, 57 (4): 166-177.
Canonaco F, Schlattner U, Pruett PS,etal.Functional expression of phosphagen kinase systems confers resistance to transient stresses inSaccharomycescerevisiaeby buffering the ATP pool [J].JournalofBiologicalChemistry, 2002, 277 (35): 31303-31309.
Chen X, Yao P, Chu X,etal.Isolation of arginine kinase fromApisceranaand its possible involvement in response to adverse stress [J].CellStressandChaperones, 2015, 20 (1): 169-183.
Clark MS, Thorne MA, Purac' J,etal.Surviving the cold: Molecular analyses of insect cryoprotective dehydration in the Arctic springtailMegaphoruraarctica(Tullberg) [J].BMCGenomics, 2009, 10:328.doi: 10.1186/1471-2164-10-328.
Colinet H, Nguyen TT, Cloutier C,etal.Proteomic profiling of a parasitic wasp exposed to constant and fluctuating cold exposure [J].InsectBiochemistryandMolecularBiology, 2007, 37 (11): 1177-1188.
Conejo M, Bertin M, Pomponi SA,etal.The early evolution of the phosphagen kinases-insights from choanoflagellate and poriferan arginine kinases [J].JournalofMolecularBiology, 2008, 66 (1):11-20.
Ellington WR.Evolution and physiological roles of phosphagen systems[J].AnnualReviewofPhysiology, 2001, 63: 289-325.
Ge LQ, Huang LJ, Yang GQ,etal.Molecular basis for insecticide-enhanced thermotolerance in the brown planthopperNilaparvatalugensStål (Hemiptera:Delphacidae) [J].MolecularEcology, 2013, 22 (22): 5624-5634.
Iwanami K, Iseno S, Uda K,etal.A novel arginine kinase from the shrimpNeocaridinadenticulata: The fourth arginine kinase gene lineage [J].Gene, 2009, 437 (1-2): 80-87.
James, JM, Collier GE.Hormonally regulated expression of arginine kinase inDrosophilamelanogaster[J].Roux’sArchivesDevelopmentalBiology, 1990, 198: 474-478.
Kang L, Shi H, Liu X,etal.Arginine kinase is highly expressed in a resistant strain of silkworm (Bombyxmori, Lepidoptera): Implication of its role in resistance toBombyxmorinucleopolyhedrovirus [J].ComparativeBiochemistryandPhysiologyB:BiochemistryandMolecularBiology, 2011, 158 (3): 230-234.
Kinsey ST, Lee BC.The effects of rapid salinity change on in vivo arginine kinase flux in the juvenile blue crab,Callinectessapidus[J].ComparativeBiochemistryandPhysiologyB:BiochemistryandMolecularBiology, 2003, 135 (3): 521-531.
Kucharski R, Maleszka R.Arginine kinase is highly expressed in the compound eye of the honey bee,Apismellifera[J].Gene, 1998, 211 (2): 343-349.
Liu F, Wang XD, Zhao YY,etal.Silencing the HaAK gene by transgenic plant-mediated RNAi impairs larval growth ofHelicoverpaarmigera[J].InternationalJournalofBiologicalSciences, 2015, 11 (1): 67-74.
Matthews BF, Macdonald MH, Thai VK,etal.Molecular characterization of arginine kinases in the soybean cyst nematode (Heteroderaglycines) [J].JournalofNematology, 2003, 35 (3): 252-258.
Michibata J, Okazaki N, Motomura S,etal.Two arginine kinases ofTetrahymenapyriformis: Characterization and localization [J].ComparativeBiochemistryandPhysiologyB:BiochemistryandMolecularBiology, 2014, 171: 34-41.
Miranda MR, Canepa GE, Bouvier LA,etal.Trypanosomacruzi: Oxidative stress induces arginine kinase expression [J].ExperimentalParasitology, 2006, 114 (4): 341-344.
Nikapitiya C, Kim WS, Park K,etal.Identification of potential markers and sensitive tissues for low or high salinity stress in an intertidal mud crab (Macrophthalmusjaponicus) [J].FishandShellfishImmunology, 2014, 41 (2): 407-416.
Pereira CA.Arginine kinase: A potential pharmacological target trypanosomiasis [J].InfectiousDisorders-DrugTargets, 2014, 14 (1): 30-36.
Qi XL, Su XF, Lu GQ,etal.The effect of silencing arginine kinase by RNAi on the larval development ofHelicoverpaarmigera[J].BulletinofEntomologicalResearch, 2015, 105 (5):555-565.
Rattanarojpong T, Wang HC, Lo CF,etal.Analysis of differently expressed proteins and transcripts in gills ofPenaeusvannameiafter yellow head virus infection [J].Proteomics, 2007, 7 (20): 3809-3814.
Schneider A, Weisner RJ, Grieshaber MK.On the role of arginine-kinase in insect flight muscle [J].InsectBiochemistryandMolecularBiology, 1989, 19 (5): 471-480.
Shekhar MS, Kiruthika J, Ponniah AG.Identification and expression analysis of differentially expressed genes from shrimp (Penaeusmonodon) in response to low salinity stress [J].FishandShellfishImmunology, 2013, 35 (6): 1957-1968.
Suzuki T, Uda K, Adachi M,etal.Evolution of the diverse array of phosphagen systems present in annelids [J].ComparativeBiochemistryandPhysiologyB:BiochemistryandMolecularBiology, 2009, 152 (1): 60-66.
Suzuki T, Soga S, Inoue M,etal.Characterization and origin of bacterial arginine kinases [J].InternationalJournalofBiologicalMacromolecules, 2013, 57: 273-277.
Tanaka K, Ichinari S, Iwanami K,etal.Arginine kinase from the beetleCissitescephalotes(Olivier).Molecular cloning, phylogenetic analysis and enzymatic properties [J].InsectBiochemistryandMolecularBiology, 2007, 37 (4): 338-345.
Tiwari BS, Belenghi B, Levine A.Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death [J].PlantPhysiologyandBiochemistry, 2002, 128 (4): 1271-1281.
Uda K, Fujimoto N, Akiyama Y,etal.Evolution of the arginine kinase gene family [J].ComparativeBiochemistryandPhysiologyD:GenomicsandProteomics, 2006, 1 (2): 209-218.
Uda K, Suzuki T.A novel arginine kinase with substrate specificity towards D-arginine [J].TheProteinJournal, 2007, 26 (5): 281-291.
Voncken F, Gao F, Wadforth C,etal.The phosphoarginine energy-buffering system ofTrypanosomabruceiinvolves multiple arginine kinase isoforms with different subcellular locations [J].PLoSOne, 2013, 8 (6): e65908.
Wang H, Zhang L, Zhang L,etal.Arginine kinase: Differentiation of gene expression and protein activity in the red imported fire ant,Solenopsisinvicta[J].Gene, 2009, 30 (1-2): 38-43.
Wang HB, Xu YS.cDNA cloning, genomic structure and expression of arginine kinase gene fromBombyxmori(L.) [J].ScientiaAgriculturaSinica, 2006.39 (11):2354-2361.[王华兵,徐豫松.家蚕精氨酸激酶基因的克隆、基因结构与表达分析.中国农业科学, 2006, 39 (11): 2354-2361]
Wang YE, Esbensen P, Bentley D.Arginine kinase expression and localization in growth cone migration [J].TheJournalofNeuroscience, 1998, 18 (3): 987-998.
Werr M, Cramer J, Ilg T.Identification and characterization of two arginine kinasesfrom the parasitic insectCtenocephalidesfelis[J].InsectBiochemistryandMolecularBiology, 2009, 39 (9): 634-645.
Wu QY, Li F, Zhu WJ,etal.Cloning, expression, purification, and characterization of arginine kinase fromLocustamigratoriamanilensis[J].ComparativeBiochemistryandPhysiologyB:BiochemistryandMolecularBiology, 2007, 148 (4): 355-362.
Wu XQ, Zhu WJ, Lü ZR,etal.The effect of rutin on arginine kinase: inhibition kinetics and thermodynamics merging with docking simulation [J].InternationalJournalofBiologicalMacromolecules, 2009, 44 (2): 149-155.
Yao CL, Ji PF, Kong P,etal.Arginine kinase from Litopenaeus vannamei: Cloning, expression and catalytic properties [J].FishandShellfishImmunology, 2009, 26 (3):553-558.
Yu x,Cao XR,Gao YF,etal.Cloning of arginine gene from the houseflyMuscadomesticaand its application in pest control [J].JournalofHebeiUniversity(Natural Science Edition), 2015, 35 (1): 70-75.[于雪, 曹新茹, 高一, 唐婷, 等.家蝇精氨酸激酶基因克隆及其在害虫防治上的应用, 河北大学学报(自然科学版), 2015, 35 (1): 70-75]
Zhang YC, An SH, Li WZ,etal.Cloning and mRNA expression analysis of arginine kinase gene fromHelicoverpaassulta(Guenée) (Lepidoptera: Noctuidae) [J].ActaEntomologicaSinica, 2011, 54 (7): 754-761.[张元臣, 安世恒, 李为争, 等.烟夜蛾精氨酸激酶基因的克隆及mRNA表达分析.昆虫学报, 2011, 54 (7): 754-761]
Zhao YY, Yang G, Wang-Pruski G,etal.Phyllotretastriolata(Coleoptera: Chrysomelidae): arginine kinase cloning and RNAi-based pest control [J].EuropeanJournalofEntomology, 2008, 105: 815-822.
Advances in arginine kinase gene
ZHANG Nan, XU Bei-Bei, WANG Jian-Jun*
(College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu Province, China)
Phosphagen kinases (PKs) play key roles in cellular energy metabolism, among which arginine kinases (AKs) are widely distributed in invertebrates, protozoan, and bacteria, and have been proposed as a potential molecular target of innovative and highly-selective insecticides.This review introduced the progress in AK gene at home and abroad, including the expression of AK gene and its regulatory mechanisms, molecular evolution and function of AK gene, as well as the application of AK gene in the insect pest control.
Arginine kinases;gene expression and its regulatory mechanisms; molecular evolution and function; insect pest control
张楠,徐贝贝,王建军.精氨酸激酶基因研究进展[J].环境昆虫学报,2017,39(3):730-734.
国家自然科学基金(31572000)
张楠,男,1992年生,江苏宿迁人,硕士研究生,研究方向为农药生态毒理与抗药性,E-mail: znfezhangnan@sina.com
*通讯作者Author for correspondence, E-mail: wangjj@yzu.edu.cn
Received: 2016-04-14; 接受日期Accepted: 2016-07-05
Q965;S433
A
1674-0858(2017)03-730-05