刘璐, 孙丽平
综 述
核转录因子κB对哮喘患儿气道平滑肌作用机制的研究进展
刘璐, 孙丽平
核转录因子κB(NF-κB)是一种促进转录的蛋白质,可调节炎症介质的基因表达和气道内多种细胞的功能,是防治哮喘的研究的一个核心环节。NF-κB感受刺激而活化后能调控前炎性因子的生成,参与多种促炎反应因子和趋化因子基因的转录。NF-κB抑制蛋白(IκB)是 NF-κB信号转导途径成员之一,以无活性形式存在于胞浆中,在外界信刺激下被激活而发生磷酸化,结果NF-κB由抑制状态被激活。肿瘤坏死因子α刺激IκB激酶α进入细胞核,继而调控特定NF-κB应答基因的表达。
哮喘; 气道平滑肌细胞; 核转录因子κB; 儿童
气道重塑是支气管哮喘(简称哮喘)的特征之一。气道平滑肌是维持气道张力的重要组织,而气道平滑肌细胞是其效应细胞,过度增殖是导致重塑的主要原因,与炎症密切相关。核转录因子(nuclear transcription factor kappa B,NF-κB)参与多种基因的转录,是炎症反应发生的核心环节,在发病过程中占重要角色。目前对于哮喘而言,NF-κB是一个研究热点。本文通过文献检索,从而阐述NF-κB对气道平滑肌细胞的作用机制。
1986年Sen和Baltimore首次在B细胞提取物中发现了能与免疫球蛋白κ轻链基因增强子发生特异结合和的蛋白,称其为NF-κB。NF-κB家族是一类可与多种基因启动子部位的κB位点发生特异性结合,促进转录的蛋白质总称,其转录因子涉及多种细胞应答。NF-κB有5个主要成员,在哺乳动物的细胞中有RelA(p65)、RelB、c-Rel、p50/p105(NF-κB1)和p52/p100(NF-κB2),所有成员的N末端均有约300个氨基酸残基的Rel同源区,各蛋白成员间可形成不同形式的同源或异源二聚体复合物[1]。
哮喘是一种异质性疾病,以气道慢性炎症和气道重塑为特征。由多细胞参与调控的慢性炎症导致黏液增多、胶原沉积和气道平滑肌增生或肥大,致使气道重构,出现气道高反应性,可引起呼吸道通气受限[2]。临床上表现为呼吸短促、气喘、咳嗽、痰液产生。目前,抗炎疗法是西医主要治疗手段,如糖皮质激素、白三烯调节剂、色甘酸钠等多种抗炎药物在临床广泛应用[3]。因炎症途径复杂,抗炎疗法仍无法从根本上解决问题。研究发现控制炎症级联反应的上游是理想的治疗策略。诱导痰测验发现气管组织内炎症细胞随着NF-κB活化而增加[4-6]。多种因子通过NF-κB调节炎症介质的基因表达,对炎症细胞有至关重要的作用[7-10]。
NF-κB通路从被发现至今有20年,与多种重要通路联系密切、牵涉病种广。目前多种治疗哮喘药物是通过抑制NF-κB的表达或阻断其信号通路的方式来提高抗炎活性[6-7,11-13]。当细胞受到刺激信号后,NF-κB从NF-κB抑制蛋白(inhibitor of NF-κB,IκB)α复合体中游离后活化进入细胞核,继而调控相关基因的表达,这个反式过程涉及IKK对IκBα的磷酸催化作用[14]。NF-κB通路是多种诱导物诱导其他基因表达调控的途径[15]。氧化应激通过NF-κB通路诱导炎症基因表达,从而导致气道炎症产生,对生理应激反应敏感的转录因子NF-κB,是炎性细胞因子网络中调节气道病理活动的重要参与者。对NF-κB活化响应的主要炎症介质有白细胞介素1β(interleukin-10,IL-1β)、肿瘤坏死因子α(tumor necrosis factor,TNF-α)和Toll样受体(Toll-like receptors,TLRs)[16]。炎症中多种信号转导通路汇集于NF-κB/IκBα复合体,因此将NF-κB定为治疗标靶,是防治哮喘研究的一个重要环节。
气道上皮细胞内NF-κB活化与哮喘发病机制有关。降低NF-κB过表达可抑制气道平滑肌细胞增殖。NF-κB可以通过调控免疫和炎症相关因子及介质之间的级联放大瀑布效应,从而对炎症和免疫反应起枢纽作用。当气道上皮组织内NF-κB通路被激活后,释放的炎症介质(如IL-1β、TNF-α等)刺激气道平滑肌细胞及成纤维细胞,使之增殖、活化,导致气道上皮细胞增生、气道组织纤维化、气道重塑[17-18]。
3.1 激活NF-κB对气道重塑的影响 气道上皮受氧化应激、细胞因子等多种刺激,可以刺激NF-κB活化,同时也可以作为佐剂诱导抗原特异性致敏。IκB激酶(IKK复合体)是NF-κB信号转导途径成员之一,包括IKKα、IKKβ催化亚基和调调节蛋白,研究表明, IKK的表达能够证实NF-κB被激活,通过诱导表达IKK复合体抑制剂的突变体激活气道内NF-κB后,IKKβ瞬时表达;而后在卵清蛋白致敏的哮喘小鼠气道内,除气道反应性乙酰甲胆碱、嗜酸性粒细胞、黏液增多以外,IKKβ表达活化标志物水平显著升高[19]。
在炎症环境中IKKβ对NF-κB的激活是重要因素,与气道重塑相关。实验通过对卵清蛋白致敏小鼠模型腹腔注射IMD-0354(合成的IKKβ抑制剂),检测发现NF-κB的活化被IMD-0354抑制,同时也包括气道重塑的病理特征,杯状细胞增生、上皮下纤维化,胶原沉积,平滑肌肥大,还有嗜酸性粒细胞数也明显目减少。气道结构改变之所以停止, 是通过IKKβ抑制IL-13、IL-1β的产生致使γ干扰素活化而实现的[20]。
结合蛋白影响气道顺应性、肺反冲和气道收缩反应,对气道平滑肌起平衡作用,与ankrd1有相互作用关系。基因检测表明,NF-κB直接结合ankrd1启动子,调节ankrd1水平。敲除平滑肌细胞的结合蛋白后,可增加Akt、IKK-α、IκBα的磷酸化,导致NF-κB激活,以及气道平滑肌增生和miR-26a上调。
上述证据表明,NF-κB过表达对气道重塑有促进作用,因此抑制其表达,有助于减少炎症反应的发生,从而抑制气道重塑。
3.2 抑制NF-κB对气道重塑的影响 NF-κB是一种转录因子,通过降低其表达水平,抑制其活化从而可以改善各种炎症性疾病,在哮喘的病理生理过程中起着至关重要的作用[21-22]。
通过抑制NF-κB下游趋化因子和降低Th2反应,可降低变应性气道炎症关键引发剂(Eotaxin-1和胸腺基质淋巴细胞生成素)和肺部Th2型细胞因子(IL-4、IL-5和IL-13)以及胸腺淋巴细胞和脾细胞中Th2转录因子结合蛋白3的表达,从而发挥发挥其抗炎活性[23]。如硫酸锌可以降低尘螨介导的炎性产物,如IL-6、IL-8、IL-1和气道平滑肌细胞的单核细胞趋化蛋白。动物实验证明,通过补充不同剂量(6、12、24、96 μmol/L)硫酸锌而抑制尘螨诱导的细胞膜外信号调节激酶和NF-κB的磷酸化,从而使锌在气道平滑肌细胞才中得以产生抗炎作用[24]。
浸润炎症细胞会产生细胞因子、趋化因子和细胞黏附分子等一系列炎性介质,可调节炎症细胞、皮细胞、平滑肌、成纤维细胞和内皮细胞的功能。NF-κB在调节气管炎症细胞基因表达有着核心作用。
4.1 淋巴细胞 淋巴细胞有免疫调节的功能。嗜酸粒细胞性炎症反应促使T淋巴细胞产生IL-4、IL-5、IL-13,再刺激B淋巴细胞而产生IgE。非过敏性嗜酸性炎症由先天淋巴细胞2和自然杀伤细胞T共同协调[25]。中性粒细胞性炎症包括Th1和Th17。Th17细胞是IL-17A、IL-17F和IL-22的主要来源,在重度哮喘者气道组织内显著增加[26]。在气道上皮细胞和气道平滑肌细胞的结构变化中,Th17因子占重要角色[27]。上皮黏蛋白和气道平滑肌增殖均与NF-κB信号相关[28-29]。
4.2 嗜酸性粒细胞 过敏性气道炎症以嗜酸性粒细胞浸润和激活为特点。嗜酸性粒细胞对气道上皮细胞受NF-κB信号调控释放细胞黏附因子有促进作用[30]。过敏原激活NF-κB和其他因子(TNF-α、IL-8等)[31]。NF-κB信号可调节TNF-α抗凋亡,对嗜酸性粒细胞的存亡起重要作用[32]。
4.3 中性粒细胞 中性粒细胞性炎症主要来源于呼吸道黏膜下的中性粒细胞浸润。NF-κB是中性粒细胞产生的IL-8是调控基因,是重要介导物[33]。Th17和巨噬细胞分别调节中心粒细胞的应答[34-35]。
4.4 上皮细胞 气道上皮组织直接与空气接触,是保护组织免受外界侵害的生理屏障,其中上皮细胞起关键作用。受NF-κB调节产生免疫或炎症介质,这些介质可复原炎症细胞,从而影响上皮功能。通过Th2应答,上皮细胞可产生胸腺基质淋巴细胞生成素[36]。黏蛋白过度增殖来源于上皮细胞,Toll样受体4和NF-κB对其有调控作用[37]。
4.5 气道平滑肌细胞 气道平滑肌持续收缩与气管痉挛有关,同时也参与气道重构,致使气管阻塞[38-40]。气道平滑肌细胞所产生生长因子、细胞因子和其他炎症介质,与阻塞性呼吸道疾病的炎症有密切联系。通过刺激炎症因子和生长因子的表达,可产生炎症细胞和上皮细胞[41]。NF-κB被凝血酶和IL-1α激活,从而调节与哮喘相关的基因。
NF-κB是多种炎性反应的通路,可以作为抗炎治疗的重要靶点。目前GINA推荐的治疗或控制哮喘的一线基础药物——糖皮质激素,则是NF-κB活化抑制剂,糖皮质激素受体和NF-κB可能在功能上互为转录拮抗因子GC可直接结合IκB-α基因启动子上的GC结合位点,活化IκB-α基因的启动子,促使IκB-α表达的上调,进而抑制NF-κB依赖的基因转录[42-43]。已使用多年的哮喘控制类药物——长效β2受体激动剂,实验表明通过抑制NF-κB信号可降低小鼠模型中TNF-α、IL-1、IL-6等促炎因子的表达[44]。除此之外,多种中药成分也具有相似作用,如在卵清蛋白致敏小鼠肺组织样本中检测到黄芪提取物能抑制NF-κB表达。雷公藤甲素通过抑制NF-κB表达,从而抑制哮喘小鼠气道杯状细胞增生[45]。说明通过抑制NF-κB活化对治疗哮喘有效。
综上所述,NF-κB与多细胞联系紧密,对哮喘相关的因子表达起重要调控作用,参与气道重塑整个环节。因此,NF-κB可以作为治疗哮喘的目标。
[1] Tully JE, Nolin JD, Guala AS, et al.Cooperation between classical and alternative NF-κB pathways regulates proinflammatoryresponses in epithelial cells[J]. Am J Respir Cell Mol Biol,2012,47(4):497-508.
[2] Tubby C, Harrison T, Todd I,et al. Immunological basis of reversible and fixed airways disease[J]. Clin Sci (Lond),2011,121(7):285-296.
[3] 马龙艳,吴琦.支气管哮喘与细胞自噬[J].天津医药,2016,44(1):3-4.
[4] Tully JE, Hoffman SM, Lahue KG, et al.Epithelial NF-κB orchestrates house dust mite-induced airway inflammation,hyperresponsiveness, and fibrotic remodeling[J]. J Immunol,2013,191(12):5811-5821.
[5] Poynter ME, Cloots R, van Woerkom T,et al. NF-kappa B activation in airways modulates allergic inflammation but not hyperresponsiveness[J]. J Immunol,2004,173(11):7003-7009.
[6] Poynter ME, Irvin CG, Janssen-Heininger YM. Rapid activation of nuclear factor-kappaB in airway epithelium in a murine model of allergic airway inflammation[J]. Am J Pathol,2002,160(4):1325-1334.
[7] Koziol-White CJ, Panettieri RA Jr.Airway smooth muscle and immunomodulation in acute exacerbations of airway disease[J]. Immunol Rev,2011,242(1):178-185.
[8] Ward JE, Harris T, Bamford T, et al.Proliferation is not increased in airway myofibroblasts isolated from asthmatics [J]. Eur Respir J,2008,32(2):362-371.
[9] Flavell SJ, Hou TZ, Lax S, et al.Fibroblasts as novel therapeutic targets in chronic inflammation[J]. Br J Pharmacol,2008,153 Suppl 1:S241-246.
[10]Li M, Riddle SR, Frid MG, et al. Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severehypoxic pulmonary hypertension[J]. J Immunol,2011,187(5):2711-2722.
[11]Ueda F, Iizuka K, Tago K,et al.Nepetaefuran and leonotinin isolated from Leonotis nepetaefolia R. Br. potently inhibit the LPS signaling pathway by suppressing the transactivation of NF-κB[J]. Int Immunopharmacol,2015,28(2):967-976.
[12]Lee SU, Sung MH, Ryu HW, et al.Verproside inhibits TNF-α-induced MUC5AC expression through suppression of the TNF-α/NF-κB pathway in human airway epithelial cells[J]. Cytokine,2016,77:168-175.
[13]Kurakula K, Vos M, Logiantara A,et al.Nuclear Receptor Nur77 Attenuates Airway Inflammation in Mice by Suppressing NF-κB Activityin Lung Epithelial Cells[J]. J Immunol,2015,195(4):1388-1398.
[14]Hinz M, Scheidereit C. The IκB kinase complex in NF-κB regulation and beyond[J]. EMBO Rep,2014,15(1):46-61.
[15]Rajendrasozhan S, Yang SR, Edirisinghe I, et al.Deacetylases and NF-kappa B in redox regulation of cigarette smoke-induced lung inflammation: epigenetics in pathogenesis of COPD[J]. Antioxid Redox Signal,2008,10(4):799-811.
[16]Edwards MR, Bartlett NW, Clarke D, et al.Targeting the NF-kappa B pathway in asthma and chronic obstructive pulmonary disease[J]. Pharmacol Ther,2009,121(1):1-13.
[17]Bisgaard H, Bonnelykke K. Long-term studies of the natural history of asthma in childhood[J]. J Allergy Clin Immunol,2010,126(2):187-197.
[18]Guo L, Li S, Zhao Y,et al.Silencing Angiopoietin-Like Protein 4 (ANGPTL4) Protects Against Lipopolysaccharide-InducedAcute Lung Injury Via Regulating SIRT1/NF-κB Pathway[J]. J Cell Physiol,2015,230(10):2390-2402.
[19]Rabe KF, Calhoun WJ, Smith N, et al. Can anti-IgE therapy prevent airway remodeling in allergic asthma[J]. Allergy,2011,66(9):1142-1151.
[20]Ogawa H, Azuma M, Muto S, et al. IκB kinase β inhibitor IMD-0354 suppresses airway remodelling in a Dermatophagoides pteronyssinus-sensitized mouse model of chronic asthma[J]. Clin Exp Allergy,2011,41(1):104-115.
[21]Liu XH, Bauman WA, Cardozo C.ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity[J]. Biochem Biophys Res Commun,2015,464(1):208-213.
[22]Payne AS, Freishtat RJ.Conserved steroid hormone homology converges on nuclear factor κB to modulate inflammationin asthma[J]. J Investig Med,2012,60(1):13-7.
[23]Wu MY, Hung SK, Fu SL. Immunosuppressive effects of fisetin in ovalbumin-induced asthma through inhibition of NF-κB activity[J]. J Agric Food Chem,2011,59(19):10496-10504.
[24]Shih CJ, Chiou YL.Zinc sulfate inhibited inflammation of Der p2-induced airway smooth muscle cells bysuppressing ERK1/2 and NF-κB phosphorylation[J]. Inflammation, 2013, 36(3): 616-624.
[25]Brusselle GG, Maes T, Bracke KR. Eosinophils in the spotlight: Eosinophilic airway inflammation in nonallergic asthma[J]. Nat Med,2013,19(8):977-979.
[26]Chien JW, Lin CY, Yang KD,et al.Increased IL-17A secreting CD4+T cells, serum IL-17 levels and exhaled nitric oxide arecorrelated with childhood asthma severity[J]. Clin Exp Allergy,2013,43(9):1018-1026.
[27]Chesné J, Braza F, Mahay G,et al.IL-17 in severe asthma. Where do we stand[J]. Am J Respir Crit Care Med,2014,190(10):1094-1101.
[28]Fujisawa T, Chang MM, Velichko S,et al.NF-κB mediates IL-1β- and IL-17A-induced MUC5B expression in airway epithelial cells[J]. Am J Respir Cell Mol Biol, 2011, 45(2): 246-252.
[29]Dragon S, Hirst SJ, Lee TH, et al.IL-17A mediates a selective gene expression profile in asthmatic human airway smooth muscle cells[J]. Am J Respir Cell Mol Biol, 2014, 50(6): 1053-1063.
[30]Chang Y, Al-Alwan L, Risse PA,et al.Th17-associated cytokines promote human airway smooth muscle cell proliferation[J]. FASEB J,2012,26(12):5152-5160.
[31]Coward WR, Sagara H, Wilson SJ, et al. Allergen activates peripheral blood eosinophil nuclear factor-kappa B to generate granulocyte macrophage-colony stimulating factor, tumour necrosis factor-alpha and interleukin-8[J]. Clin Exp Allergy,2004,34(7):1071-1078.
[32]Kankaanranta H, Ilmarinen P, Zhang X,et al.Tumour necrosis factor-α regulates human eosinophil apoptosis via ligation of TNF-receptor 1 and balance between NF-κB and AP-1[J]. PLoS One,2014,9(2):e90298.
[33]Ordonez CL, Shaughnessy TE, Matthay MA, et al.Increased neutrophil numbers and IL-8 levels in airway secretions in acute severe asthma:Clinical and biologic significance[J]. Am J Respir Crit Care Med,2000,161(4 Pt 1):1185-1190.
[34]Nakagome K, Matsushita S, Nagata M.Neutrophilic inflammation in severe asthma[J]. Int Arch Allergy Immunol,2012,158 Suppl 1:96-102.
[35]Pappas K, Papaioannou AI, Kostikas K,et al.The role of macrophages in obstructive airways disease: chronic obstructive pulmonary diseaseand asthma[J]. Cytokine, 2013, 64(3): 613-625.
[36]Lee HC, Ziegler SF. Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airwayepithelial cells is controlled by NF-kappa B[J]. Proc Natl Acad Sci U S A,2007,104(3):914-919.
[37]Kang JH, Hwang SM, Chung IY. S100A8, S100A9 and S100A12 activate airway epithelial cells to produce MUC5AC viaextracellular signal-regulated kinase and nuclear factor-κB pathways[J]. Immunology, 2015,144(1):79-90.
[38]James AL, Wenzel S.Clinical relevance of airway remodelling in airway diseases[J]. Eur Respir J,2007,30(1):134-155.
[39]Amin K, Lúdvíksdóttir D, Janson C,et al.Inflammation and structural changes in the airways of patients with atopic and nonatopic asthma. BHR Group[J]. Am J Respir Crit Care Med,2000,162(6):2295-2301.
[40]Gosselink JV, Hayashi S, Elliott WM, et al.Differential expression of tissue repair genes in the pathogenesis of chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med,2010,181(12):1329-1335.
[41]Xia YC, Redhu NS, Moir LM, et al.Pro-inflammatory and immunomodulatory functions of airway smooth muscle: emergingconcepts[J]. Pulm Pharmacol Ther,2013,26(1):64-74.
[42]Bateman ED, Hurd SS, Barnes PJ,et al.Global strategy for asthma management and prevention: GINA executive summary[J]. Eur Respir J,2008,31(1):143-178.
[43]Ratman D, Vanden Berghe W, Dejager L, et al. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering[J]. Mol Cell Endocrinol,2013,380(1-2):41-54.
[44]Hu Z, Chen R, Cai Z, et al. Salmeterol attenuates the inflammatory response in asthma and decreases the pro-inflammatorycytokine secretion of dendritic cells[J]. Cell Mol Immunol,2012,9(3):267-275.
[45]Chen M, Lv Z, Zhang W,et al.Triptolide suppresses airway goblet cell hyperplasia and Muc5ac expression via NF-κB in a murine model of asthma[J]. Mol Immunol,2015,64(1):99-105.
(本文编辑:刘颖)
Mechanism of action of nuclear transcription factor kappa B in airway smooth muscle in asthmatic children
LIULu,SUNLiping.
ChangchunUniversityofTraditionalChineseMedicine,Changchun130117,China
Nuclear factor kappa B is a transcription-promoting protein, which regulates the gene expression of inflammatory mediators and function of many kinds of cells in airway. It is a core element in the research of asthma prevention and treatment. NF-kappa B can regulate the production of proinflammatory factors after activation,and participates in the transcription of a variety of proinflammatory and chemokine genes. I kappa B is one of the NF- kappa B signal pathways and is inactive in the cytoplasm. The phosphorylation arises after I kappa B is activated by external stimuli, and then NF- kappa B is activated. Tumor necrosis factor α stimulates I kappa B kinase α to enter into the nucleus, which then regulate the expression of specific NF-kappa B response gene.
Asthma; Airway smooth muscle; Nuclear transcription factor kappa B; Children
国家自然基金面上资助项目(81473729);吉林省科技厅自然科学基金项目(20150101209JC)
130117 长春,长春中医药大学2014级中医儿科学专业研究生(刘璐);130021 长春,长春中医药大学附属医院儿科(孙丽平)
刘璐(1983-),男,长春中医药大学2014级博士研究生在读。研究方向:中医药防治小儿肺系疾病的基础研究
孙丽平,E-mail:slpwzt7063@163.com
10.3969/j.issn.1674-3865.2017.02.005
R725.6
A
1674-3865(2017)02-0106-04
2016-10-29)