缺血性卒中后免疫机制及免疫调节治疗进展

2017-01-11 12:01赵博王佳伟
中国卒中杂志 2017年5期
关键词:调节剂临床试验淋巴细胞

赵博,王佳伟

缺血性卒中是世界范围内致死和致残的主要原因之一[1],免疫因素及炎症反应在缺血性卒中的病理生理过程中起重要作用[2]。卒中介导损伤可能对免疫系统产生影响,反之,免疫和炎症也参与急性脑损伤和康复[3-4]。炎症因子[如损伤相关模式分子(damage-associated molecular patterns,DAMPs)、C-反应蛋白(C-reaction protein,CRP)、白细胞介素(interleukin,IL)-1、IL-6、肿瘤坏死因子(tumor necrosis factor,TNF)、干扰素(interferon,IFN)等]和细胞信号通路(如CD3+T细胞、CD3+CD4+T细胞、CD3+CD8+T细胞及CD4+CD25+FoxP3+Tregs细胞等)通过多种途径来调节机体免疫反应,这为脑缺血性损害的治疗提供了广阔的前景[5]。近几年,免疫调节剂作为卒中后治疗的辅助用药,其对卒中后免疫系统的影响逐渐被重视。多项研究发现,缺血性卒中后针对免疫通路的治疗可以延长溶栓时间窗,并且改善患者的远期预后。本文主要对近几年缺血性卒中后免疫机制及免疫调节剂应用的相关研究进展进行综述。

1 缺血性卒中后免疫系统变化机制

1.1 固有免疫反应 缺血性卒中可使补体激活以及发生氧化应激反应,直接损害局部的血管系统,导致血管内皮下抗原的暴露、血管内皮细胞死亡和血脑屏障(blood brain barrier,BBB)完整性的破坏。机体调动固有免疫系统,使免疫细胞附着于血管壁,上调趋化因子和黏附分子的表达,使其渗透入脑实质。中性粒细胞、单核细胞和巨噬细胞等固有免疫细胞进一步导致血管损伤和炎症反应。免疫细胞通过释放基质金属蛋白酶(matrix metallo-proteinases,MMP)-9等炎性介质,导致BBB的破坏和梗死面积的扩大[6]。在脑实质中,星形胶质细胞和小胶质细胞也被炎症和死亡神经元释放的DAMPs激活。DAMPs与免疫细胞表面的Toll样受体(toll-like receptors,TLRs)结合激活和放大固有免疫反应,加重缺血性损伤,但短暂激活TLRs可以诱导免疫耐受[7-8]。这些反应性星形胶质细胞和小胶质细胞进一步刺激白细胞的聚集,释放促炎趋化因子,形成一个血管损伤、炎症和细胞死亡的恶性循环[9]。

1.2 适应性免疫反应 适应性免疫反应主要由效应T细胞介导,后者是由死亡的神经元释放的DAMPs和脑组织特异性的抗原刺激产生[10]。这些T细胞聚集到缺血性损伤的大脑区域,穿过受损的BBB后,于脑实质内释放炎性细胞因子,包括CRP、IL-1、IL-6、TNF、IFN等,导致迟发性神经毒性反应[11-12]。最终炎症过程结束是通过调节性T细胞(Tregs)和巨噬细胞产生的IL-10及转化生长因子-β(transforming growth factor-β,TGF-β)联合作用,抑制辅助T细胞介导的炎症反应,促进神经元的修复[13-14]。Tregs主要起免疫负调节作用,有抑制抗原特异性T细胞增殖及抗原呈递细胞的功能,在免疫耐受中发挥重要作用。动物试验观察到,在缺血性卒中后的3 d,Tregs在缺血侧大脑半球累积,脾脏T淋巴细胞中Tregs百分比升高[15]。Tregs在病程后期(14~30 d)在缺血侧大脑半球明显累积和扩散[16]。在Tregs治疗脑梗死动物的研究中观察到,Tregs可使脑梗死体积减小且减轻大脑炎症反应[17]。扩增体内Tregs可减轻炎症反应和改善预后[18]。

1.3 卒中后免疫抑制综合征 2005年,Meisel等[19]提出了卒中诱导的免疫抑制综合征(strokeinduced immunodepression syndrome,SIDS),其特征是急性卒中后出现快速和持续的细胞免疫反应抑制,主要表现为广泛的淋巴细胞凋亡和功能障碍。SIDS实质为神经-内分泌-免疫调节机制:①缺血性卒中→应激→下丘脑-垂体-肾上腺轴活动增强→肾上腺皮质激素分泌增加→外周血T淋巴细胞数下降;②缺血性卒中→交感神经系统活动增强→肾上腺及交感神经末梢释放儿茶酚胺类激素增加→外周血、肝脏、脾脏T淋巴细胞数下降[20]。

SIDS对于机体具有双向调节作用。一方面,卒中后免疫抑制是一种适应性反应,阻止中枢神经系统不必要的自身免疫抗体,从而起到神经保护作用[21]。动物试验及临床试验证明,削弱固有免疫和适应性免疫反应可改善卒中预后。动物实验表明,抑制性CD8+及CD4+T细胞迁移到中枢神经系统和直接破坏细胞毒性CD8+T细胞可使梗死体积减小及缺血后炎症反应减弱[22]。Zierath等[23]在大鼠实验中发现,在再灌注时分别给予细菌脂多糖(lipopoly-saccharide,LPS)能模拟炎症刺激,与其他各组比较,卒中后感染组大鼠死亡率更高,神经功能评分更差,表明炎性反应可使卒中结局恶化,还会增加脑梗死后脑萎缩程度。另一方面,卒中后免疫抑制将会导致感染如肺炎和尿路感染等发病率的增加[21]。卒中发病后7 d内发生的感染为卒中相关性感染(strokeassociated infection,SAI)[24]。亚急性皮质醇增多症与卒中后24 h不良预后[25]及死亡率增高相关[26]。Vogelgesang等[27]发现,脑梗死后外周血淋巴细胞、CD3+T细胞、CD3+CD4+T细胞、CD3+CD8+T细胞绝对值在发病当天即下降,之后逐渐上升,于发病后14 d恢复至与健康对照组无差异,卒中后感染者的T淋巴细胞亚群下降较非感染者下降更为明显。Urra等[28]通过观察46例急性缺血性卒中及脑出血患者发现,外周血中淋巴细胞、CD3+T细胞、CD3+CD4+T细胞、CD3+CD8+T细胞及CD4+CD25+FoxP3+Tregs细胞在发病后当天开始下降,第2天降至最低,后逐渐回升;肺部感染者细胞数明显低于非感染者。T淋巴细胞减少可能作为卒中后感染的一个预测因素,通过检测T淋巴细胞亚群的变化,可以辅助判断卒中患者的免疫状态,用于指导治疗和判断预后[29]。

2 免疫调节剂在卒中后的应用

对固有免疫与适应性免疫以及炎症的调节可以促使免疫反应由组织损伤向神经保护转换[5]。卒中后针对免疫通路的治疗可能延长溶栓时间窗,并且改善远期预后。免疫调节剂作为辅助用药,为卒中的治疗开辟了一条新思路。

2.1 芬戈莫德(Fingolimod,FTY720) 芬戈莫德作为目前受到广泛关注的免疫调节剂之一,2010年成为首个通过美国食品及药物管理局(Food and Drug Administration,FDA)批准的治疗多发性硬化(multiple sclerosis,MS)的口服生物有效性药物。其活性形式FTY720-磷酸是1-磷酸-鞘氨醇(sphingosine 1-phosphate,S1P)类似物,与细胞膜S1P受体结合。

F T Y 720的主要作用有:①免疫调节:FTY720与T淋巴细胞和B淋巴细胞S1P受体结合,抑制淋巴细胞再循环从初级淋巴器官排出[30-31]。通过减少中枢神经系统淋巴细胞浸润的数量,有效地降低适应性免疫反应对中枢神经系统的直接神经毒性作用,降低细胞因子诱导的微循环系统周围的缺血继发的炎性损伤[32-34]。②血管保护作用:FTY720可诱导星形胶质细胞释放粒细胞/巨噬细胞集落刺激因子(granulocyte-macrophage colony stimulating factor,GM-CSF),减少与TNF-α和IFN-γ接触的内皮细胞的死亡[35]。GMCSF也可降低白细胞在血管壁的黏附和局部血小板的激活,抑制血栓形成和炎症反应,改善微血管功能[32,36]。此外,S1P受体也表达于血管内皮细胞,FTY720与之结合可以直接提高BBB的完整性[37]。③直接神经保护作用:FTY720通过直接与神经元受体相互作用,促进抗凋亡因子的产生,且增加缺血性损伤的恢复力,从而起到神经保护作用[38]。

Liu等[39]回顾总结了2013年之前的9项关于FTY720对缺血性卒中治疗的动物试验,其中8项研究结果均显示FTY720能减少脑梗死体积且改善功能预后。2014年天津市神经病学研究所进行了一项临床试验,发现急性缺血性卒中患者发病72 h内口服FTY720可限制脑缺血继发损伤,降低微血管通透性,减轻神经损伤,并且促进神经功能恢复[40-41]。鉴于FTY720对内皮屏障的保护功能,重组组织型纤溶酶原激活物(recombinant tissue plasminogen activator,rt-PA)联合FTY720疗法为溶栓时间窗内的缺血性卒中开辟了一条新的治疗思路[42]。在血栓栓塞性脑梗死小鼠模型中观察到,FTY720可减低rt-PA治疗所致的出血转换并促进神经功能恢复[43]。临床试验发现,在急性缺血性卒中患者溶栓后第1天,FTY720联合rt-PA治疗与单独rt-PA治疗组相比,可以抑制病灶的扩大,减少出血和提高神经功能评分[44]。

2.2 他汀类药物 除了调节血脂代谢的作用,他汀类药物在缺血性卒中中的抗炎作用逐渐被重视。动物实验发现,预防性他汀治疗可以减轻缺血性脑损伤,促进脑灌注及神经功恢复,并且可以延长rt-PA治疗缺血性卒中的时间窗[45-46]。

临床试验观察到,缺血性卒中发病24 h内应用辛伐他汀治疗的患者较发病7 d后加用辛伐他汀治疗的患者,血清中的TNF-α水平轻度降低[47]。一项对临床前研究的荟萃分析显示,服用他汀类药物后大脑中动脉阻塞所致脑梗死体积平均减小11.2%[48]。他汀类药物减慢动脉粥样化形成的作用一部分源于调节脂质代谢,但在低动脉硬化风险患者中也发现其可降低心肌梗死和缺血性卒中风险[49]。临床试验观察到,在无高脂血症但高敏C-反应蛋白水平升高的健康人群中,瑞舒伐他汀也可显著降低主要心血管事件的发生率[50]。

综上所述,免疫系统在缺血性卒中病理过程中发挥的重要作用正逐渐得到揭示,但其机制复杂,还有待更加深入的研究。卒中会打破神经系统与免疫系统之间的平衡,造成内稳态失衡。因此,适当的免疫调节治疗是需要的。未来需要更多的大样本临床试验,进一步阐明免疫调节剂对于缺血性卒中的有效性及安全性。相信在不久的将来可以看到免疫调节剂在临床中的广泛应用。

1 Sacco RL,Chong JY,Prabhakaran S,et al.Experimental treatments for acute ischemic stroke[J].Lancet,2007,369:331-341.

2 Matthew D. Hammond,Youxi Ai,et al. Gr1+macrophages and dendritic cells dominate the in fl ammatory in fi ltrate 12 h after experimental intracerebral hemorrhage[J]. Transl Stroke Res,2012,3:125-131.

3 Emsley HC,Hopkins SJ. Post-stroke immunodepression and infection:an emerging concept[J]. Infect Disord Drug Targets,2010,10:91-97.

4 Fathali N,Ostrowski RP,Hasegawa Y,et al. Splenic immune cells in experimental neonatal hypoxiaischemia[J]. Transl Stroke Res,2013,4:208-219.

5 Picascia A,Grimaldi V,Iannone C,et al. Innate and adaptive immune response in stroke:Focus on epigenetic regulation[J]. J Neuroimmunol,2015,289:111-120.

6 Chaturvedi M,Kaczmarek L. MMP-9 inhibition:a therapeutic strategy in ischemic stroke[J]. Mol Neurobiol,2014,49:563-573.

7 Famakin BM,Mou Y,Johnson K,et al. A new role for downstream Toll-like receptor signaling in mediating immediate early gene expression during focal cerebral ischemia[J]. J Cereb Blood Flow Metab,2014,34:258-267.

8 Fadakar K,Dadkhahfar S,Esmaeili A,et al. The role of Toll-like receptors (TLRs) in stroke[J]. Rev Neurosci,2014,25:699-712.

9 Iadecola C,Anrather J. The immunology of stroke:from mechanisms to translation[J]. Nat Med,2011,17:796-808.

10 Chamorro A,Meisel A,Planas AM,et al. The immunology of acute stroke[J]. Nat Rev Neurol,2012,8:401-410.

11 Yilmaz G,Arumugam TV,Stokes KY,et al. Role of T lymphocytes and interferon-gamma in ischemic stroke[J]. Circulation,2006,113:2105-2112.

12 Planas AM,Gomez-Choco M,Urra X,et al. Brainderived antigens in lymphoid tissue of patients with acute stroke[J]. J Immunol,2012,188:2156-2163.

13 Kamel H,Iadecola C. Brain-immune interactions and ischemic stroke:clinical implications[J]. Arch Neurol,2012,69:576-581.

14 Ziv Y,Ron N,Butovsky O,et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood[J]. Nat Neurosci,2006,9:268-275.

15 Gelderblom M,Leypoldt F,Steinbach K,et al.Temporal and spatial dynamics of cerebral immune cell accumulation in stroke[J]. Stroke,2009,40:1849-1857.

16 Stubbe T,Ebner F,Richter D,et al. Regulatory T cells accumulate and proliferate in the ischemic hemisphere for up to 30 days after MCAO[J]. J Cereb Blood Flow Metab,2013,33:37-47.

17 Brea D,Agulla J,Rodriguez-Yanez M,et al.Regulatory T cells modulate in fl ammation and reduce infarct volume in experimental brain ischaemia[J]. J Cell Mol Med,2014,18:1571-1579.

18 Na SY,Mracsko E,Liesz A,et al. Ampli fi cation of regulatory T cells using a CD28 superagonist reduces brain damage after ischemic stroke in mice[J]. Stroke,2015,46:212-220.

19 Meisel C,Schwab JM,Prass K,et al. Central nervous system injury-induced immune de fi ciency syndrome[J].Nat Rev Neurosci,2005,6:775-786.

20 Gill D,Veltkamp R. Dynamics of T cell responses after stroke[J]. Curr Opin Pharmacol,2016,26:26-32.

21 Famakin BM. The immune response to acute focal cerebral ischemia and associated post-stroke immunodepression:a focused review[J]. Aging Dis,2014,5:307-326.

22 Liesz A,Zhou W,Mracsko E,et al. Inhibition of lymphocyte traf fi cking shields the brain against deleterious neuroin fl ammation after stroke[J]. Brain,2011,134:704-720.

23 Zierath D,Thullbery M,Hadwin J,et al. CNS immune responses following experimental stroke[J].Neurocrit Care,2010,12:274-284.

24 Vargas M,Horcajada JP,Obach V,et al. Clinical consequences of infection in patients with acute stroke:is it prime time for further antibiotic trials?[J]. Stroke,2006,37:461-465.

25 Weidenfeld J,Leker RR,Gai N,et al. The function of the adrenocortical axis in permanent middle cerebral artery occlusion:effect of glucocorticoids on the neurological outcome[J]. Brain Res,2011,1407:90-96.

26 Marklund N,Peltonen M,Nilsson TK,et al. Low and high circulating cortisol levels predict mortality and cognitive dysfunction early after stroke[J]. J Intern Med,2004,256:15-21.

27 Vogelgesang A,Grunwald U,Langner S,et al.Analysis of lymphocyte subsets in patients with stroke and their in fl uence on infection after stroke[J]. Stroke,2008,39:237-241.

28 Urra X,Cervera A,Villamor N,et al. Harms and bene fi ts of lymphocyte subpopulations in patients with acute stroke[J]. Neuroscience,2009,158:1174-1183.

29 Shim R,Wong CH. Ischemia,immunosuppression and infection--tackling the predicaments of post-stroke complications[J]. Int J Mol Sci,2016,17.

30 Thangada S,Khanna KM,Blaho VA,et al. Cellsurface residence of sphingosine 1-phosphate receptor 1 on lymphocytes determines lymphocyte egress kinetics[J]. J Exp Med,2010,207:1475-1483.

31 Hunter SF,Bowen JD,Reder AT. The direct effects of fi ngolimod in the central nervous system:implications for relapsing multiple sclerosis[J]. CNS Drugs,2016,30:135-147.

32 Kraft P,Göb E,Schuhmann MK,et al. FTY720 ameliorates acute ischemic stroke in mice by reducing thrombo-in fl ammation but not by direct neuroprotection[J]. Stroke,2013,44:3202-3210.

33 Czech B,Pfeilschifter W,Mazaheri-Omrani N,et al. The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia[J]. Biochem Biophys Res Commun,2009,389:251-256.

34 Wei Y,Yemisci M,Kim HH,et al. Fingolimod provides long-term protection in rodent models of cerebral ischemia[J]. Ann Neurol,2011,69:119-129.

35 Spampinato SF,Obermeier B,Cotleur A,et al.Sphingosine 1 phosphate at the blood brain barrier:can the modulation of S1P receptor 1 in fl uence the response of endothelial cells and astrocytes to in fl ammatory stimuli?[J]. PLoS One,2015,10:e0133392.

36 Kleinschnitz C,Kraft P,Dreykluft A,et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature[J]. Blood,2013,121:679-691.

37 Prager B,Spampinato SF,Ransohoff RM. Sphingosine 1-phosphate signaling at the blood-brain barrier[J].Trends Mol Med,2015,21:354-363.

38 Hasegawa Y,Suzuki H,Sozen T,et al. Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats[J]. Stroke,2010,41:368-374.

39 Liu J1,Zhang C,Tao W,Liu M. Systematic review and meta-analysis of the ef fi cacy of sphingosine-1-phosphate (S1P) receptor agonist FTY720 ( fi ngolimod)in animal models of stroke[J]. Int J Neurosci,2013,123:163-169.

40 Fu Y,Zhang N,Ren L,et al. Impact of an immune modulator fi ngolimod on acute ischemic stroke[J]. Proc Natl Acad Sci,2014,111:18 315-18 320.

41 Aoki T,Sumii T,Mori T,et al. Blood-brain barrier disruption and matrix metalloproteinase-9 expression during reperfusion injury:mechanical versus embolic focal ischemia in spontaneously hypertensive rats[J].Stroke,2002,33:2711-2717.

42 Cai A,Schlunk F,Bohmann F,et al. Coadministration of FTY720 and rt-PA in an experimental model of large hemispheric stroke-no in fl uence on functional outcome and blood-brain barrier disruption[J]. Exp Transl Stroke Med,2013,5:11.

43 Campos F,Qin T,Castillo J,et al. Fingolimod reduces hemorrhagic transformation associated with delayed tissue plasminogen activator treatment in a mouse thromboembolic model[J]. Stroke,2013,44:505-511.

44 Zhu Z,Fu Y,Tian D,et al. Combination of the immune modulator fi ngolimod with alteplase in acute ischemic stroke:a pilot trial[J]. Circulation,2015,132:1104-1112.

45 Kawashima S,Yamashita T,Miwa Y,et al. HMG-CoA reductase inhibitor has protective effects against stroke events in stroke-prone spontaneously hypertensive rats[J]. Stroke,2003,34:157-163.

46 Chen J,Zhang ZG,Li Y,et al. Statins induce angiogenesis,neurogenesis,and synaptogenesis after stroke[J]. Ann Neurol,2003,53:743-751.

47 Szczepanska-Szerej A,Kurzepa J,Wojczal J,et al. Simvastatin-induced prevention of the increase in TNF-alpha level in the acute phase of ischemic stroke[J]. Pharmacol Rep,2007,59:94-97.

48 Baryan HK,Allan SM,Vail A,et al. Systematic review and meta-analysis of the ef fi cacy of statins in experimental stroke[J]. Int J Stroke,2012,7:150-156.

49 Smith CJ,Denes A,Tyrrell PJ,et al. Phase II antiin fl ammatory and immune-modulating drugs for acute ischaemic stroke[J]. Expert Opin Investig Drugs,2015,24:623-643.

50 Ridker PM,Danielson E,Fonseca FA,et al.Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein[J]. N Engl J Med,2008,359:2195-207.

【点睛】缺血性卒中后免疫反应激活或抑制的机制复杂,针对性的免疫调节剂临床研究结果尚不确定,但前景较广。

猜你喜欢
调节剂临床试验淋巴细胞
植物生长调节剂使用注意事项及常见病害
遗传性T淋巴细胞免疫缺陷在百草枯所致肺纤维化中的作用
甲状腺切除术后T淋巴细胞亚群的变化与术后感染的相关性
不同土壤调节剂肥料组合对苏打盐碱地玉米的影响
肝内T淋巴细胞单细胞图谱显示原发性硬化性胆管炎中肝脏幼稚样CD4+T淋巴细胞的扩增
美国特战司令部参与抗衰药临床试验 合成一百余种新型NAD+增强剂
ACS患者血清FSTL-1、外周血淋巴细胞中PPAR-γ、 MMP-9与冠状动脉狭窄程度的关系
品管圈在持续改进医疗器械临床试验全周期质量控制中的应用
参加临床试验,也要“顺道”
做事如做药