田润+丁伟
摘要:从化学实验视角出发,设计了主题为“设计检测Co2+浓度的技术方案”STEM项目,展示了该项目的开发和活动的实施过程。该项目围绕工程问题,以图像比色法为技术核心,将化学定量实验技能、比色法原理与信息技术中信息的数字化及Excel软件操作、数学函数模型的知识相融合,有利于培养信息时代背景下高中生利用跨学科知识解决问题的能力和创新精神。
关键词:STEM;项目学习;化学实验;图像比色法
文章编号:1005–6629(2016)11–0043–05 中图分类号:G633.8 文献标识码:B
1 基于项目的STEM学习概述
STEM是科学(Science)、技术(Technology)、工程(Engineering)和数学(Mathematics)四门学科的简称。它将四门学科内容组合成为有机整体,强调多学科的交叉融合,以培养学生在掌握知识和技能的同时,能够将其迁移应用到解决实际问题的能力和创新精神。STEM最核心的特征是跨学科性,此外还包括趣味性、体验性、情境性、协作性、设计性、艺术性、实证性和技术增强性等特征。
STEM有两种最基本的课程模式:相关课程模式和广域课程模式[1],前者在课程形式上依然属于分科教育,但在各学科内容编排上注重相互之间的联系;后者是通过活动项目将各学科整合为有组织的课程结构。基于项目的STEM学习是STEM和基于项目的学习(Project-based learning:PBL)模式相结合的产物,是进行跨学科整合的一种基本取向[2]。PBL利用学生自主探究的过程来获得与现实生活有关联并且能付诸应用的学习结果[3],基本要素为内容、活动、情境和结果[4,5]。因此,基于项目的STEM学习可以理解为以PBL的基本要素为框架整合STEM内容的学习模式,是利用科学、数学知识和技术手段,通过工程设计活动解决工程问题的学习过程,其基本要素如表1所示。
2 基于化学实验的STEM项目开发
2.1项目的开发过程
化学实验是科学探究活动的主要载体,基于项目的学习具有基于问题和基于探究的属性,因此将化学实验结合工程设计转化为基于项目的STEM学习是可行的。对于化学分科课程的教师来说,开发STEM项目更具操作性,开发过程如图1所示。
本文选取高中化学教科书《实验化学》(人教版)中比色法这一内容。经查阅文献发现,基于手机摄像头的图像比色法在健康诊断与环境、医药、食品检测等领域有广泛应用[6]。在分析了图像比色法中蕴含的跨学科知识和技术后,最终开发了“设计检测Co2+浓度的技术方案”这一项目。
2.2 项目的实验设计
该项目活动的技术核心为图像比色法这一融合了信息技术的实验方法,该方法较为新兴,原理与目视比色法相同,即物质显色的实质是对不同波长光的选择性吸收,显出的颜色是它所吸收光的互补色,溶液颜色的深浅取决于吸光物质浓度的高低[7]。但图像比色法以手机等拍照设备作为图像采集器,以计算机代替人眼,将颜色深浅转化为RGB分量值,从而将色溶质的浓度与RGB分量值之间建立关联,能够更精确地检测有色溶质溶液的浓度,且所需的器材便利、步骤简单,具体步骤如图2所示。
实验涵盖了化学、物理、数学知识和信息技术,结合工程设计后转化为“设计检测Co2+浓度的技术方案”的STEM项目也必然涵盖这些跨学科知识,体现了STEM的跨学科性,如表2所示。
3 活动的实施过程设计
STEM项目的实施主要是通过工程设计过程和探究学习的5E教学模型的整合来实现的,如ITEEA开发的基于设计的工程设计EbDTM项目、波士顿科学博物馆创立的工程是基础EiE项目、世界在运动AWIM项目[8]。工程设计过程包括“识别问题和制约因素”、“调查研究”、“形成概念”、“分析观点”、“建立模型”、“测试和优化”、“沟通和反思”七个步骤。其中,“识别问题和制约因素”是指明晰问题和任务,知道制约因素和标准,比如时间、资源、经费、预期任务成品的特征;“调查研究”是指了解与主题相关的信息,如已有的解决方案,以防止做重复劳动;“形成概念”是指运用头脑风暴想出多种解决方案,并识别每个方案的风险和利益;“分析观点”是指依据数学、科学和技术原理和项目的标准以及限制筛选和精细化出前一步骤的方案;“建立模型”是指学生在分析观点的基础上建立一个工作模型或原型;“测试和优化”是指测试模型是否满足要求,根据测试结果优化现有的设计;“沟通和反思”是指进行人际互动、口头、视觉、书面方式的沟通,既适应于团队工作环境,又用于对方案和产品的开发过程记录和解释[9]。
本项目的活动实施过程兼顾了工程设计和探究学习两大实践系统,结合化学实验的特性,以“问题聚焦和明确”、“思考和探究”、“解释和方案确立”、“构建和实验”、“测试和优化”、“沟通和评价”六个过程构成。“问题聚焦和明确”包含了“识别问题和制约因素”的工程内涵,且强调从社会、环境、生活等问题聚焦到化学问题,将化学问题明确为具有制约因素和评估标准的工程问题;“思考和探究”的目的与“调查研究”相一致,同时强调学生在教师的引导下进行思考和实验探究学习;“解释和方案确立”包含“形成概念”和“分析观点”的过程,同时强调对新方案原理性知识的解释;“构建和实验”是“建立模型”中的一种工作模型,是STEM项目中的化学实验主体部分;“测试和优化”与工程设计标准过程相同;“沟通和评价”融合了“沟通和反思”与科学探究中的“反思与评价”环节。
3.1 问题聚焦和明确:观看图文资料引发工程问题
[教师]演示有关工厂排放含Co2+废水、大量Co2+对生命体健康造成危害、Co2+废水处理方法的图文资料,提出问题:要确定Co2+处理达标与否需要环境检测工程师做些什么?
[学生]检测处理前后的废水中Co2+的浓度。
[教师]某厂排放的含钴污水只有Co2+有颜色,浓度范围不超过0.1M。那么,如果你是一位环境监测工程师,如何设计一个检测工业废水中重金属离子Co2+浓度的技术方案?制约因素是什么?什么样的技术方案是好的?发放可用材料的清单:LED灯泡、液晶屏、拍照手机、白色A4纸、白色纸板、7mL离心管、25mL容量瓶、10mL量筒、烧杯、分析天平、药匙、玻璃棒、蒸馏水、CoCl2·6H2O固体。
[学生]交流讨论,归纳:制约因素是含钴污水只有Co2+有颜色,浓度范围不超过0.1M。
评估标准:要求检测的相对误差不超过10%,且误差越小越好;需要自己设计和组装装置,装置要满足简易、便宜的要求;制作方案文本,并进行方案设计的汇报。
设计意图:强调STEM学习中的工程思想,创设工程问题情境,帮助学生识别工程问题;通过提问促使学生对制约因素和评估标准进行交流讨论,进一步明确任务。
3.2 思考和探究:学习比色法和比色分析的化学史
[教师]发给每组学生3种不同浓度的CoCl2溶液,提出问题:通过观察现象能够得出什么结论?
[学生]不同浓度的有色溶液,颜色深浅与溶液的浓度有关,颜色越深,浓度越高。
[教师]告诉学生3种CoCl2溶液中颜色最浅和最深的溶液的浓度,提出问题:如何知道待测溶液的大致浓度?
[学生]思考得出:大致浓度是另两种溶液浓度的平均值。
[教师]讲解比色法的原理:物质显色的实质就是对不同波长光的选择性吸收,显出的颜色是它所吸收光的互补色,CoCl2溶液显粉红色就是因为它选择性吸收青色光。溶液颜色的深浅决定于溶液吸收光的量的多少,即取决于吸光物质浓度的高低[10]。CoCl2溶液的浓度越高,对青色光的吸收就越多,透过的红色光越强,颜色就越深,在一定浓度范围内,其颜色深浅与浓度成正比。讲述目视比色法的操作步骤和误差的计算方法。提出问题:误差大小的范围是多少,如何进一步确定待测溶液浓度?引导并辅助学生进行实验探究。
[学生]进行实验活动:配制中间浓度的溶液,再次对比待测溶液的颜色,通过颜色的不断渐进,最终确定待测溶液浓度。
[教师]告诉学生待测溶液的实际浓度,组织学生交流实验结果。
[学生]交流各自测得的浓度和误差,得出目视比色法受到人眼识别颜色能力限制和半定量分析的特点。
[教师]进一步讲述比色分析发展的化学史,提出问题:目视比色法、分光光度法的特点和利弊分别是什么?
[学生]比较目视比色法、分光光度法的特点和利弊。
设计意图:进行STEM项目中科学知识的教学,通过问题串刺激学生思考和探究,发现目视比色的实验方法,引导学生基于实验证据了解比色法的原理和优缺点,进而传授比色法和比色分析发展的化学史的知识,引导学生从各方面综合考虑使用不同方法和仪器检测有色物质的利弊,为工程设计过程中方案的确立做铺垫。
3.3 解释和方案确立:学习图像的数字化,“发明”并采纳图像比色法
[教师]讲解:由于不同人识别颜色的能力不同,故刚才同学们测得待测溶液的浓度不尽相同,但计算机能够高精度地识别颜色,是通过图像的数字化处理实现的,它是指将一幅图像从其原来的形式转换为数字形式的处理过程[11]。对于彩色图像,量化步骤能够获得RGB三原色的分量值[12]。
提出问题:如何让计算机代替我们的眼睛读出且量化有色溶液的颜色深浅?
[学生]理解计算机识别颜色的原理:图像的数字化。结合目视比色法和图像数字化技术,“发明”图像比色法。
[教师]总结性地讲述图像比色法的原理和步骤(图2所示)。引导学生再次综合比较各浓度检测方法,确立问题解决方案。
[学生]图像比色法综合了目视比色法和分光光度法的优点,故采纳图像比色法作为项目问题的解决方案。
设计意图:继续讲解STEM项目中的跨学科知识:图像的数字化,引导学生进行方法和技术的联用,从而“发明”图像比色法;引导学生学习STEM项目中工程设计原则,结合评估标准综合对比各个方法的利弊,使得学生关注到图像比色法的应用。
3.4 构建和实验:构建图像比色法的检测装置并进行实验
[教师]确定了图像比色法作为解决方案后,就要构建图像比色法的检测装置进行实验。提出问题:根据Co2+浓度范围不超过0.1M的制约因素,如何配制一定浓度梯度的标准溶液?浓度范围应如何?
[学生]交流讨论:用容量瓶配制一定浓度的标准溶液,再通过稀释的方法配制其他浓度的标准溶液。浓度范围可以是0M到0.1M之间。
[教师]提出问题:影响图像比色法可靠性的重要条件是什么?
[学生]交流讨论:图像清晰与否、颜色是否失真、RGB分量值提取时注意图像范围的选取等。
[教师]讲述:重要条件之一是获取样品溶液颜色的真实信息,照片图像颜色能真实地体现溶液颜色。因此,在构建图像比色法检测Co2+浓度的装置时,要注意选择白光作为光源,且光源均匀稳定;所有溶液样品的前景和背景都应是白色;拍摄的像素不能过低;手机摄像头或相机摄像头应与桌面垂直,高度与样品高度一致,置于中央的样品前方至少30cm处[13]。其次,用专业的生物图像处理软件ImageJ提取RGB分量值,使用矩形选框工具,点击菜单栏中的Analyze·Histogram,即可读出矩形选框中的灰度值和RGB分量值。应采用移动矩形选框的方式读取各溶液样品中心区域的RGB分量值。
[学生]按小组合作构建装置、配制溶液、进行图像比色法的实验。
设计意图:强调STEM项目中的技术学习,讲述使用图像比色法的操作注意事项和ImageJ软件的操作要领,为学生自主构建和实验提供必要的脚手架支持。
3.5 测试和优化:测试检测方案的检测误差,采用控制变量法优化解决方案
[教师]提出问题:如何测试基于图像比色法所构建的装置能够准确地检测Co2+浓度?
[学生]交流讨论:用某已知浓度的CoCl2溶液作为待测样品,与空白样品、标准样品一起进行图像采集,进行实验确定检测误差。
[教师]提出问题:如果对检测结果不满意,如何优化解决方案?
[学生]交流讨论:采用控制变量法,可以优化的条件包括光源的选择、RGB分量值的选择、加显色剂与否等。
[教师]请根据测试结果进一步优化解决方案,最后设计出条件明确的检测Co2+浓度的技术方案,制作方案文本。
设计意图:引导学生进一步学习STEM项目中的工程设计原则,以测试结果为导向优化目前的解决方案,以呈现方案结果为导向体验工程思想解决问题的过程。
3.6 沟通和评价:展示方案设计成果,多角度评价活动表现
[教师]要求学生汇报技术方案的设计、测试和优化过程,展示技术方案文本,同时鼓励学生交流方案设计构成中所遇到的挫折,引导学生进行合作态度、计划安排、结果表达、方案制作、跨学科知识和工程设计原理掌握方面的自评和互评。
[学生]各小组汇报技术方案的设计、测试和优化过程,展示最终的技术方案,并用数据、图表展示方案的检测误差、成本大小等预期结果,最后进行自我评价,其他学生对其技术方案的设计过程、小组分工合作和计划安排、方案制作等方面提出质疑、意见或积极评价,小组成员对这些评价进行反思和沟通。
[教师]总结各小组在方案设计过程中的表现和技术方案的合理性,巩固本STEM项目中涉及的跨学科知识,强调工程设计需要识别问题和制约因素、调查研究、形成概念、分析观点、建立模型、测试和优化、沟通和反思的过程。
设计意图:促进学生的合作意识,体会STEM项目学习的跨学科性。
4 结语
“设计检测Co2+浓度的技术方案”项目基于图像比色法,涵盖了化学定量实验技能和定量思想、信息的数字化技术及Excel软件操作、函数模型的建立、工程设计思想,融合性高,思维性强,切实地指向了信息时代背景下中学生STEM素养的培养。
参考文献:
[1]余胜泉等.STEM教育理念与跨学科整合模式[J].开放教育研究,2015,21(4):13~22.
[2][3][10] Robert M. Capraro.王雪华译.基于项目的STEM学习[M].上海:上海科技教育出版社,2015:5~7,89,49~54.
[4]刘景福.基于项目的学习(PBL)模式研究[J].外国教育研究,2002,29(11):18~20.
[5]刘景福.基于项目的学习模式(PBL)研究[D].南昌:江西师范大学硕士学位论文,2002:15~26.
[6][7] Kate Grudpan. Applications of Everyday IT and Communications Devices in Modern Analytical Chemistry: A Review [J]. Talanta,2015:84~94.
[8][11]华中师范大学等.分析化学(上册)(第三版)[M].北京:高等教育出版社,2001:276.
[9]王玲玲.基于STEM的小学科学课程设计研究[D].上海:华东师范大学硕士学位论文,2015:40~59.
[12][13]黄爱民,安向京等.数字图像处理与分析基础[M].北京:中国水利水电出版社,2005:4~5,47~49.
[14] Theodore R. Knutson. A Fresh Look at the Crystal Violet Lab with Handhold Camera Colorimetry [J]. Journal of Chemical Education,2015,(92):1692~1695.