一类Neumann边界的Kirchhoff型方程无穷多解的存在性

2016-12-15 02:21赵仕海索洪敏雷春雨张鹏
遵义师范学院学报 2016年4期
关键词:理学院张鹏临界点

赵仕海,索洪敏,雷春雨,张鹏

(1.贵州民族大学理学院,贵州贵阳550025;2.遵义师范学院,数学与计算科学学院贵州遵义563002)

一类Neumann边界的Kirchhoff型方程无穷多解的存在性

赵仕海1,索洪敏1,雷春雨1,张鹏2

(1.贵州民族大学理学院,贵州贵阳550025;2.遵义师范学院,数学与计算科学学院贵州遵义563002)

利用临界点理论中的定理,研究一类Neumann边界的Kirchhoff型方程无穷多解的存在性,并获得了一些新的可解性条件。

Kirchhoff型方程;临界点;Neumann边界;无穷多解;存在性

本文考虑如下的Kirchhoff方程:

1 预备知识

2 主要结果及其证明

由(ƒ1)知I(u)是偶泛函,再由引理1和引理2,得到方程(1)存在无穷多解.定理1证毕.

[1]D D Qin.Multiplicity solutions for semilinear elliptic equations with sign-changing potential and nonlinearity[J].Electronic Journal of Differential Equations,2013,(207):1-9.

[2]Z Y Yao.Multiple solutions for a class of semilinear elliptic equations with nonlinear boundary conditions[J].Applied Mathematics,2014,(5):90-95.

[3]A Mao,Z Zhang.Sign-changing and multiple solutions of Kirchhoff type problems without the P.S.Condition[J].Nonlinear Anal,2009,(70):1275-1287.

[4]B T Cheng.Multiplicity of Nontrivial solutions for Kirchhoff Type problems[J].Boundary Value Problems,2010,(268): 268-946.

[5]C V Pao.Nonlinear parabolic and elliptic equations[M].New York:Plenum Press,1992.

[6]Y CAn,H M Suo.Multiplicity of solutions for Neumann problems for semilinear elliptic equations[J].Abstract and Applied Analysis,2014,(360):1-13.

[7]A Ambrosetti,P H Rabinowitz.Dual variational methods in critical point theory and applications[J].J Functional Analysis,1973,(14),349-381.

[8]S J Chen,L Li.Multiple solutions for the nonhomogeneous Kirchhoff equation on RN[J].Nonli near Anal,2013,(14): 1477-1486.

(责任编辑:朱 彬)

The Existence of Infinitely Many Solutions for a Class of Kirchhoff Equation with Neumann Boundary

ZHAO Shi-hai1,SUO Hong-min1,LEI Chun-yu1,ZHANG Peng2
(1.School of Science,Guizhou Minzu University,Guiyang 550025,China;2.Zunyi Normal College,Zunyi 563002,China)

By using the theorem in critical point theory,the existence of infinitely many solutions for a class of Kirchhoff equation involving Neumann boundary is studied.Besides,some new solvability conditions are obtained.

Kirchhoff equation;the critical point;Neumann boundary;infinitely many solutions;existence

O175.25

A

1009-3583(2016)-0111-03

2016-01-12

贵州省科学技术基金资助项目(黔科合J字[2013]2141号,黔教科研发[2013]405号)

赵仕海,男(仡佬族),贵州石阡县人,在读硕士,主要从事非线性泛函分析研究。

猜你喜欢
理学院张鹏临界点
基于临界点的杭州湾水体富营养化多年变化研究
Quantitative analysis of the main components in ceramic raw materials based on the desktop LIBS analyzer
Competitive effect between roughness and mask pattern on charging phenomena during plasma etching
基于PLC控制的平移式自动门设计
非瞬时脉冲分数阶微分方程边值问题解的存在性与唯一性
理发风波
西安航空学院专业介绍
———理学院
超越生命的临界点
Itô积分和Str atonovich积分的比较
光强可调大功率LED开关电源的设计与研究