孙海平
摘 要:中等职业教育是我国职业教育的重要组成部分,在社会就业需求性人才培养中具有举足轻重的地位。中职教育必须紧跟时代发展的脚步进行深层次的教学改革,提高中职学生社会需求型的职业技能。本文以中职数学教学为例,在顺应中职教学改革的趋势下,引入数学建模思想,对数学教学进行实践分析。
关键词:中等职业院校 数学教学 数学建模思想 教学改革
数学建模思想在数学教学活动中已经得到广泛的认可,在不同阶段、不同层次的教学中取得了良好的教学效果。但是对于中职教育而言,数学教学体系的构建并不完善,出于学生基本情况、数学教材使用情况、数学教学认知与能力水平情况的影响,数学建模思想尚未完全运用于中职数学教学实践中。为了中职数学更深层次的教学改革,本文以理论联系实际的方式,从实践教学的视角对数学建模思想在中职数学教学中的应用进行深入的分析。
一、中职数学教学中数学建模思想运用可行性分析
数学建模思想在中职数学教学中运用是否具备可行性,需要结合实际进行调查验证。为了完成本文的研究,对笔者所在学校所开展的数学教学实际情况、学生数学学习实际情况进行了详细的调查分析。调查采用问卷调查的方式,包括学校学生数学应用能力、数学建模思想解决实际数学问题的社会需求、数学建模思想在当前中职院校数学教学中体现情况以及学生对数学建模思想的认知四个方面。
调查结果显示,笔者所在学校学生在数学建模正确率、验证模型正确率方面的表现差强人意,表明学生在数学知识的实际运用上并未表现出应有的水平。对中职院校的数学课本抽样调查结果发现,虽然绝大多数数学教材的设计已经涉及了数学建模思想,但是培养学生数学应用能力方面的内容仍然欠缺;在中职数学所能够涉及的社会岗位抽样调查结果显示,比如资源环境领域、物流运输领域等对运用数学建模思想解决实际数学问题的能力需求空间巨大。
对学生的综合问卷调查结果则表明,超过80%的学生认为数学建模能力的建立十分必要,对于其以后的就业具有积极的帮助,他们乐于接受数学学习中的数学建模能力构建。从这些实际调查结果可知,当前中职数学教学中引入数学建模思想具有较强的可行性。
二、数学建模思想在中职数学课堂教学过程中的构建
1.融入数学建模思想的中职数学课堂
融入数学建模思想的中职数学课堂教学与其他教学模式一样,同样需要经过五个基本步骤,而且在每个步骤中需要结合数学建模思想的特征、优势、原则、规律以及中职学生数学学习的基本情况进行针对性的课堂设置,并且课堂教学整体上要遵循构建主义理论。
首先在备课阶段,教师需要对构建主义、人本主义以及数学建模思想、中职数学教学内容、中职学生基本情况具有充分的了解和认知,以全新的数学建模教学观念准备教学材料;其次在课堂引入阶段,教师在备课时已准备的丰富教学素材的基础上,以构建主义要求导入新知识,尤以数学软件进行教学演示为宜;再次在引导教学阶段,教师引导学生对新知识进一步挖掘,遵循启发引导、循序渐进的原则;第四在课堂结束阶段,通过一堂课的教学,学生对所学的数学建模知识获得了基本的了解和掌握,在结束阶段需要进一步总结以巩固学生的数学建模思想;最后在课后的巩固阶段,以传统的课外作业和学期测评方式对学生进行考核评价,使学生及时发现问题并分析和解决问题,使数学建模知识得到进一步巩固。
2.中职数学基础知识的铺垫
从整体上来看,中职数学教学中的数学建模能力的培养是一个系统工程,需要经历一系列的步骤,而基础知识的铺垫则被视为第一步。在中职数学基础知识的铺垫阶段,通常所采取的教学方式为“讲解-传授”式,要求教师自身对数学建模思想具有足够的了解和掌握,然后结合自己的了解和实践,以讲解的方式向学生传授数学建模的基础知识,以使学生对数学建模具有初步的认知,进而引导和帮助学生建立基础的数学知识体系和数学建模基础知识体系。此外,在教师进行数学建模讲解时,除基础认知之外,还需要引导学生对数学建模的基本运用方法进行初步的感悟,并建立系统的数学基础语言体系。
3.数学建模思想融入课堂的教学阶段
在中职学生获得初步的数学建模基础知识后,应在数学教师的引导下进入下一阶段的学习,即课堂融入阶段。在中职数学教学中,数学建模思想的课堂融入通常以“活动—参与”的教学模式,其强调数学建模课堂教学中学生的主动参与性,突出学生在学习中的主体地位。数学建模融入课堂教学阶段至关重要,对教师本身的素质和要求较高,要求教师对课堂教学具有整体的、灵活的把握能力。课堂融入阶段通常包括情景创设、师生合作活动探索、师生交流和讨论、师生总结与研究拓展、课后实践活动五个步骤。
4.中职学生数学建模思想的应用
中职教育对人才培养具有较高的实际运用能力要求,这就需要中职数学教学同样要求实际应用能力的训练和锻炼。经过以上阶段的教学实施之后,中职学生基本获得了系统数学知识和基本的数学建模能力,接下来需要在教师的引导下进入实践应用联系阶段。该阶段的目的在于锻炼学生自主完成数学实习作业、体会运用数学建模思想模拟解决实际数学问题的经过,进而巩固学生的建模思想。
在该阶段,教师应该坚持学生自主的原则,指导学生完成自我检验和自我修正。学生的自主练习可采取独立完成、小组合作完成等形式,数学实习作业题的设置则需要难易适中,能够给学生预留足够的发挥空间。
三、中职数学建模思想的教学应用实践
在中职数学建模教学中,教师设计的教学内容应以日常生活中遇到的数学问题为例,这样能够强化学生的理解和记忆。
比如在基础知识铺垫阶段,以城市用水收费标准为例来引导学生学习分段函数,使其结合自身日常生活中经常遇到的事情来加深对数学基础知识的理解,并在此基础上引导学生对日常生活中常见的涉及分段函数知识点的案例进行常识性应用和巩固,比如出租车的收费模式等。
而在数学建模思想融入课堂教学阶段,可在学生已掌握知识点基础上,教师设置情境进行互动性学习,比如“函数知识在手机卡计费中的应用”,教师创设情境,让学生通过建立函数模型来解决实际问题。
数学建模思想的实际应用是中职数学教学的最终目的,在此阶段,教师不妨将实际生活中的问题设计成数学案例,要求学生在课余时间独立或以团队合作的方式完成练习。
例如:某蔬菜大棚黄瓜种植中,由于菜农对于市场行情并没有准确合理地把握,因此对出售价格和时间的关系掌握不准,进而无法确定最佳经济收入。在这个背景下,请学生结合历年市场发展趋势与行情解决如下问题:建立黄瓜市场出售时间与价格的函数关系,并解释市场发展趋势;建立黄瓜种植时间与成本的函数关系,并解释成本的变化原因;在哪个时间段上市能够使菜农获得最大收益?
学生通过团队配合所做出的最佳方案如下。
第一步,进行市场调研,包括网络资料搜集与蔬菜市场实地调研。经过为期三天的调研,学生获得了2015年2月15日起300天的市场资料和数据,在经过教师的指导后,学生通过直角坐标系下的离散点图找到了市场变化趋势,成功地将日常生活中的实际问题转化成为了数学问题。
第二步,学生结合300天的数据进行了模型假设,即假设一:所搜集到的数据为真实可靠的数据;假设二:种植成本与市场售价间的差额为菜农的实际纯收益。
第三步,在该问题的关键点上引入建模思想,即种植成本与上市时间在2月15日起第150天时出现最低拐点,而市场售价与上市时间关系函数则在2月15日起第200天时出现最低拐点。在该处引入建模思想,可以得出种植成本Q与时间t之间的函数关系,以及市场售价P与时间t之间的函数关系。
对所出现的两个时间拐点而言,由于气候的影响,黄瓜在资料时间起点后的150天进入高产期,种植成本达到最低,此后黄瓜的市场供给开始增加,进而在此后的50天左右,市场供给达到最大化,造成市场售价最低,之后随着产量的减少,市场供需逐渐平衡,市场售价也开始回升。将生产成本与实践的关系函数进行整理,然后将其与销售价格和时间的关系函数进行整合,得出生产成本、销售时间、市场售价之间的综合函数,在此函数的基础上对时间区间进行计算,便可得到最佳值。
第四步,讨论分析,假设菜农的最大收益为K,则K=P-Q,那么:
当100≤P≤300而且0≤t≤200时,那么当P=250且t=50时,K得到最大值为100;
当100≤P≤300而且200≤t≤300时,在P与t的限制条件下,P取值400无意义,因此P应当取值300,对应的t取值300,此时K值为87.5;
由以上分析可知,当从2月15日起第50天时,菜农选择上市所获得的收益最大。
在学生完成此案例之后,一方面可以使学生对数学知识的实际运用获得了直观的认知,另一方面也培养了中职学生的数学应用能力。
四、实践教学效果分析
在笔者所在学校数学建模思想实践教学实施一段时间之后,采用问卷调查的方式分别对学生和教师进行了调查。结果显示,学生对于该模式的教学认可度明显提升,并表现出积极的兴趣和主动的参与,而且阶段性的测试结果也表明其数学成绩获得了明显的提升。实践应用结果表明,数学建模思想在中职数学教学中的应用明显改变了中职生学习数学的态度,学习的积极性和兴趣不断提升,学习方式也由原来的被动模式转变为主动模式,学生的综合能力和学习成绩大大提升。
此外,对教师的调查结果也显示,教师也更乐于采用此类教学方式,更乐于引入数学建模思想来进行中职数学教学。综合实践表明,中职数学教学中融入数学建模思想的教学模式具有推广价值。
参考文献:
[1]李涛.中等职业学校数学建模课程建设之研究[D].鲁东大学,2013.
[2]王娟,侯玉双.数学建模思想在数学分析课程教学中的应用[J].科技信息,2013(23).
[3]王炳炳.中职数学教学中“数学建模”思想的渗透[J]. 职业教育研究,2010(6).
(作者单位:绍兴市技工学校)