2.1.3Taylor的幂法则的测定
根据相关指标计算得到logS2=0.9533logm-0.0485,r=0.997 3,loga<0,b<1,说明该幼虫为均匀分布,种群密度越大分布越均匀。
2.2聚集因素分析
运用Blackith的种群聚集均数公式,计算不同样地的聚集均数,结果如表2所示。各样地的λ值均小于2,说明幼虫的均匀分布原因是某些环境因素所引起[11]。
2.3Iwao理论抽样数模型
将建立的m*-m回归模型中a,b的值带入Iwao最适理论抽样数模型,得出最适抽样数公式:
表1桑天牛越冬幼虫的聚集度指标
Table 1Aggregation indexes of overwintering larvae ofAprionagermariHope
样本采集地编号平均虫口密度m/(头·株-1)平均拥挤度m*方差S2扩散系数CWaters指标kCassie指标CALloyd聚块性指标m*/mMorisita指标IδDavid指标I10.24620.19830.23440.9522-5.1485-0.19420.80570.8229-0.047820.25130.21380.24190.9625-6.7053-0.14910.85080.8685-0.037530.21030.16600.20100.9558-4.7561-0.21030.78970.8094-0.044240.19490.16300.18870.9682-6.1189-0.16340.83650.8591-0.031850.30770.23980.28680.9321-4.5349-0.22050.77940.7927-0.067960.24100.18930.22860.9483-4.6594-0.21460.78530.8024-0.051770.22560.18100.21560.9554-5.0560-0.19780.80220.8208-0.044680.25640.21640.24620.9600-6.4145-0.15590.84410.8613-0.040090.23590.19930.22730.9634-6.4393-0.15530.84470.8634-0.0366100.21540.18770.20940.9723-7.7778-0.12860.87140.8926-0.0277110.27180.24360.26410.9718-9.6319-0.10380.89610.9134-0.0282120.22050.19070.21390.9702-7.3877-0.13540.86460.8852-0.0298130.15900.13960.15590.9807-8.2245-0.12160.87840.9076-0.0193140.23080.18380.21990.9531-4.9160-0.20340.79650.8146-0.0469150.24620.22390.24070.9778-11.0638-0.09040.90960.9289-0.0222160.26150.21900.25040.9575-6.1503-0.16260.83740.8541-0.0425170.27690.22640.26290.9495-5.4844-0.18230.81760.8330-0.0505180.26670.22150.25460.9549-5.9091-0.16920.83070.8470-0.0451190.17950.15940.17590.9799-8.9216-0.11210.88790.9140-0.0201200.20510.18160.20030.9765-8.7151-0.11470.88520.9079-0.0235210.28210.26170.27630.9796-13.8387-0.07230.92770.9449-0.0204
表2桑天牛越冬幼虫种群密度与聚集均数分析
Table 2Analysis of average aggression size of overwintering larvae ofAprionagermariHope
样地m2kλ10.2462-10.2970-0.223320.2513-13.4105-0.231230.2256-9.5122-0.184340.1949-12.2378-0.180650.3077-9.0698-0.282960.2513-9.3188-0.215770.2256-10.1120-0.208480.2513-12.8289-0.226790.2359-12.8787-0.2077100.2256-15.5556-0.1986110.2718-19.2637-0.2588120.2205-14.7753-0.1991130.1590-16.4490-0.1483140.2359-9.8319-0.1958150.2462-22.1277-0.2374160.2564-12.3006-0.2411170.2769-10.9688-0.2358180.2667-11.8182-0.2333190.2256-17.8431-0.1644200.2051-17.4302-0.1923210.2564-27.6774-0.2684
N=t2/D2(1.009 7m-0.197 1),取t=1,允许误差D为0.1,0.2,0.3时,虫口密度为0.09,0.11,0.13,0.15,0.17,0.19,0.21,0.23,0.25,0.27,0.29,0.31,0.33,0.35,0.37头·株-1时,求出桑天牛越冬幼虫最适理论抽样数量结果见表3。
2.4序贯抽样模型
拟设桑天牛幼虫防治指标m0=0.2头·株-1,t=1,a=0.009 7,b=0.802 9,代入可得序贯抽样模型:T(n)=0.2n±0.4405,令n=10,20,30,40,……200,可得出序贯抽样表见表4。
3 讨论
本文通过对桑天牛越冬幼虫的6种聚集度指标法、Iwao和Taylor回归方程、聚集均数的判定表明,桑天牛越冬幼虫空间分布型呈均匀分布,此种分布是由幼虫个体间相互排斥和环境因素引起。而黄大庄等[12]研究认为,桑天牛幼虫在杨树上为聚集分布,且具有密度依赖性。刘康成[13]则认为,桑天牛幼虫在桑树上的空间分布型为聚集分布,且幼虫个体间相互吸引,可见,桑天牛幼虫在不同寄主或同种寄主的不同生长环境中其空间分布会有所不同。具体分析形成均匀分布的原因可能是,桑天牛产卵更喜欢选择在树体高大粗壮的寄主上产卵[14],本次调查的桑树树龄2~3年,树形、树势尚处于生长阶段还未完全定型,会降低桑天牛产卵量和引起桑天牛幼虫间的食物竞争[15];调查所采用的方法是根据新鲜排粪孔作为幼虫虫口数的判定指标,桑天牛的幼虫活动如排粪随季节、光照、温度的变化,冬季气温低于10 ℃排粪也几乎停止,可见环境因素当中的温度因子也会带来一定影响[16],可以解释此种均匀分布是由幼虫个体间相互排斥和环境因素相互作用引起。
文中建立了最适抽样数公式:N=t2/D2(1.0097m-0.1971)和序贯抽样模型:T(n)=0.2n±0.4405。在虫口密度低的情况下,抽样量较多,虫口密度高的情况下,抽样量较少。在相同虫口密度下,允许误差的大小也决定抽样量的多少。在田间应用序贯抽样调查时,若调查样本的累计虫量超过上限,即判为防治对象田;低于下限则认为暂时不需要防治;当累计虫量在上下限之间,则应继续进行调查,直到最大抽样数。
表3桑天牛越冬幼虫理论抽样数
Table 3Theoretical sampling number of overwintering larvae ofAprionagermariHope
允许误差D虫口密度/(头·株-1)0.090.110.130.150.170.190.210.230.250.270.290.310.330.350.370.111028987576535745124614193843543283062862692530.2276225189163144128115105968982767267630.312210084736457514743393634323028
表4桑天牛越冬幼虫序贯抽样表
Table 4Sequential sampling table of overwintering larvae ofAprionagermariHope
抽样量抽样株数102030405060708090100110120T(n)上限368111315182022242729T(n)下限124579101214161719
[1]郑声镛, 高祖训, 徐国宇,等. 桑树病虫害防治学[M].北京:农业出版社,1990:310-312.
[2]黄大庄. 桑天牛的研究进展[J]. 河北林学院学报, 1996, 11(3-4): 290-295.
[3]于新文, 况荣平.咖啡天牛幼虫种群的空间分布型及应用[J]. 动物学研究, 1997, 18(1): 39-44.
[4]杜伟, 储一宁, 李腾芳, 等. 云南省桑园内茶黄螨的发生规律与防治方法[J]. 蚕业科学,2013, 39(6):1072-1073.
[5]王希蒙, 李崇阳, 张真. 黄斑星天牛空间分布型的初步研究[J].林业科学, 1988, 24(3): 352-357.
[6]张文军. 生态学研究方法[M]. 广州: 中山大学出版社, 2007: 45-55.
[7]IWAO S. A new regression method for analyzing the aggregation pattern of animal populations[J].ResearchesonPopulationEcology, 1968, 10(1): 1-20.
[8]TAYLOR L R. Aggregation, variance and the mean[J].Nature, 1961, 189(4776): 732-735.
[9]TAYLOR L R. Assessing and interpreting the spatial distributions of insect populations[J].AnnualReviewofEntomology,1984,29(1):321-357.
[10]丁岩钦. 昆虫数学生态学[M]. 北京:科学出版社,1980:1-36, 84-124.
[11]赵阳, 朱景乐, 李芳东, 等. 杜仲梦妮夜蛾幼虫的空间分布型及抽样技术[J]. 环境昆虫学报, 2014, 36(4): 629-634.
[12]黄大庄, 岳书奎, 闫浚杰, 等. 北方桑天牛水平与垂直双向分布规律的研究[J]. 东北林业大学学报,1993, 21(2): 36-39.
[13]刘康成. 桑天牛幼虫空间分布型及抽样技术[J]. 昆虫知识,1997, 34(2): 80-81.
[14]王志刚, 黄大庄, 阎浚杰. 桑天牛在不同树种或品种间产卵选择性试验[J]. 河北林学院学报,1994, 9(1): 65-68.
[15]董廷宣, 彭炳香. 桑天牛的产卵规律的初步探讨与防治[J]. 中国蚕业,2003, 24(4): 30-31.
[16]黄大庄, 王志刚, 阎浚杰. 桑天牛幼虫活动规律[J]. 东北林业大学学报,1996, 25(6): 83-86.
(责任编辑张韵)
Spatial distribution pattern and sampling technique of overwintering larvae of Apriona germari Hope
SU Zhen-guo, LIU Yong-hui, LIU Jian-bo, ZHU Hong-tao
(InstituteofSericultureandApiculture,YunnanAcademyofAgriculturalSciences,Mengzi661101,China)
The spatial distribution patterns of overwintering larvae ofAprionagermarilarva inMorusalbawere studied using six spatial distribution pattern analysis methods(m*/m,C,k,Iδ,I,CA)and two regression equations(Taylor power and m*-m), the assembling reasons were analyzed with average aggression size λ. The results indicated that spatial distribution patterns ofAprionagermarilarva population was in uniform distribution. The optimal sampling equation(N=t2(1.0097m-0.1971)/D2) and sequential sampling equation(T(n)=0.2n±0.4405) were established. This paper may provide the basis for prediction and control ofAprionagermari.
AprionagermariHope; overwintering larvae; spatial distribution pattern; sampling techniques
10.3969/j.issn.1004-1524.2016.02.20
2015-07-11
现代农业产业技术体系建设专项资金“蚕桑”(CARS-22-SYZ27)
苏振国(1983—),男,山西右玉人,硕士,助理研究员,从事桑树病虫害防治工作。E-mail:szgmcn@163.com
Q968.1
A
1004-1524(2016)02-0302-04
苏振国,刘永辉,刘建波,等. 桑天牛越冬幼虫的空间分布与抽样技术[J].浙江农业学报,2016,28(2): 302-305.