冉玲平,夏黎明
心脏纵向弛豫时间(T1)成像技术及其临床应用
冉玲平,夏黎明*
纵向弛豫时间成像(T1 Mapping)技术能定量显示心肌组织的T1值,从而准确评价多种心肌病变的心肌组织特征。T1 Mapping现在已有多种采集技术,其中初始T1值可重复性高,能反映心肌纤维化,通过测量初始T1值与增强后T1值还能显示心肌弥漫性病变。作者就T1 Mapping技术及其临床应用进行综述。
心脏成像技术;磁共振成像
ACKNOWLEDGMENTS This work was supported by the general program of National Natural Science Foundation of China (No. 81471637).
心脏磁共振(cardiac magnetic resonance,CMR)以其无创、分辨率高的特点,已经广泛应用于临床评价心脏功能及结构。以往的CMR延迟强化(late gadolinium enhancement,LGE)只能定性或半定量显示心肌的局部病变,对于心肌弥漫性病变的检出存在较大局限性。T1 Mapping技术能定量反映心肌的组织特征,通过测量初始T1值与注射对比剂增强后T1值,可检测心肌水肿、纤维化、脂肪浸润、铁沉积等病理改变。
T1 Mapping成像可通过反转恢复(IR)或饱和恢复(SR)序列来实现。目前其临床应用多是基于IR序列的采集方法,特别是改良的Look-Locker反转恢复(modifed Look-Locker IR, MOLLI)序列。
最初的T1 Mapping IR序列是由Look和Locker(LL)提出的,它是在准备脉冲施加后,在T1弛豫曲线的多个时间点上进行连续取样,但心脏的搏动不允许按逐个体素分别进行T1 Mapping成像,同时也会降低空间分辨率[1]。
Messroghli等[2]在2004年提出了改良的Look-Locker反转恢复序列,即MOLLI序列。标准的MOLLI序列是在第1个与第2个反转脉冲后采集3幅图像,第3个反转脉冲后采集5幅图像,2个反转脉冲之间的3次心动周期用于T1磁化矢量的恢复;根据心电门控(ECG)在舒张末期进行数据采集,用17次心动周期采集完成11幅图像,用符号表示为:3(3)3(3)5。图像的采集过程依赖于心率,使用小角度激励能减少患者间心率不同带来的影响[3]。MOLLI序列优势是可重复性高、信噪比高,但缺点在于采集时间较长,对于一些患者难以完成屏气要求。此外,由于MOLLI采用稳态自由进动序列(SSFP)进行读出,所以结果是恢复时间T1*,这低于真实的T1值[4]。采用选择性SSFP读出时,T1*图像也可用于对有流动血液进入的血池的分析,进而来计算细胞体积分数(extracelluar volume fraction,ECV)。
冉玲平, 夏黎明, 等. 心脏纵向弛豫时间(T1)成像技术及其临床应用. 磁共振成像, 2016, 7(9): 716-720.
有研究者提出新的MOLLI拟合算法(inversion group (IG) ftting)[5],允许任意反转组与间歇期的结合(无间歇期),采集模式为5(0)3或1(0)2(0)3(0)5,在8次心跳或11次心跳内采集图像。这种新技术能缩短扫描时间,增加覆盖率,因此也会减少一些患者图像的运动伪影。但与传统的MOLLI相比,它的图像精度会降低。
另一种缩短扫描时间的方法是缩短的MOLLI序列(shortened MOLLI,ShMOLLI)[6],采集方式为5(1)1(1)1,共需9次心跳,ShMOLLI 序列的优势在于采集时间短、图像分辨率高,但Roujol等[7]研究表明ShMOLLI与MOLLI序列均会低估心肌T1值。
T1 Mapping 常用的SR序列采集方法有饱和恢复单次激发采集(saturation recovery single shot acquisition,SASHA),其采集需单次屏气,在10次心动周期内完成,即饱和恢复曲线的多个时间点连续采集10幅图像,第1幅图像是在磁化准备前获得的,之后的图像是在饱和脉冲后不同的恢复时间点采集,Chow等[8]研究表明SASHA序列T1值的准确度不受绝对T1值、T2值、心率及翻转角的影响。SASHA序列与MOLLI和ShMOLLI相比准确度较高[7],但信噪比(SNR)会减低,此外,更多的伪影也会降低精度[9]。
T1 Mapping技术包括初始(增强前)T1 Mapping及增强后T1 Mapping。
初始T1 Mapping是以非注射对比剂的扫描方式,测量心肌的T1值,该技术可重复性高,不受对比剂注射的影响,适用于肾功能不全或对比剂过敏的患者。
增强后T1 Mapping是通过注射0.15~0.20 mmol/kg剂量的钆对比剂,注射后至少15 min采集T1 Mapping图像[9],测量心肌增强后T1值,但增强后T1值受多种因素影响[10],如对比剂剂量、浓度、注射速率及注射后采集时间等。
心肌组织初始T1值的增加出现在两种情况:(1)心肌损伤或心肌炎症导致的细胞水肿或细胞坏死;(2)心肌淀粉样变性或纤维化(心肌梗死瘢痕、肥厚型心肌病、扩张型心肌病等)导致的细胞外间隙扩张[11]。而T1值的减低见于心肌脂肪浸润(如Anderson-Fabry病)及心肌铁沉积性疾病。
3.1心肌炎(myocarditis)
诊断心肌炎的组织特征包括心肌水肿、充血及坏死或纤维化[12]。心内膜下活检是确诊心肌炎的重要方法,但它可能会引起并发症或不良后果。近年来CMR已成为诊断可疑心肌炎患者优先选择的无创性检查[13],但心肌炎累及全心时常规CMR很难发现,而定量T1 Mapping可以诊断累及全心的弥漫性心肌炎。Ferreira等[14]研究表明急性心肌水肿节段的初始T1值(1113 ms)高于正常心肌节段(944 ms) (1.5 T ShMOLLI),并发现初始T1 Mapping诊断急性心肌水肿的准确性较T2W-CMR高。
3.2心肌梗死(myocardial infartion,MI)
急性MI期心肌细胞以水肿为主,慢性MI期随着细胞外胶原增加,心肌细胞被瘢痕或纤维替代。急性和慢性心肌梗死时T1的变化不同,初始T1 Mapping能在心肌节段水平评估急性心肌损伤的程度[15],其检测急性MI敏感性和特异性分别为96%、91%[16]。慢性MI心肌节段的初始T1值(1314 ms)高于正常心肌节段(1099 ms)(3.0 T MOLLI)[17],而增强后T1 Mapping 检测慢性MI的敏感性和特异性较急性MI高[16]。Dall'Armellina等[15]研究发现MI时心肌T1值与局部心肌运动功能有关,无运动与运动减低的心肌节段初始T1值均高于正常运动的心肌节段(分别为1368 ms、1299 ms、1196 ms),在微小心肌梗死的患者中,T1 Mapping检测心肌损伤的能力优于T2WI。
3.3心肌淀粉样变性(cardiac amyloidosis,CA)
淀粉样变性是由于蛋白质错误折叠形成不溶性纤维,积聚在细胞外间隙并破坏许多组织器官的结构和功能的系统性疾病,心脏是原发性轻链(AL)淀粉样变性最常受累的器官[18]。近年来已经证实CMR,特别是LGE,是发现淀粉样变性累及心脏的方法。然而,系统性淀粉样变性患者常合并肾功能不全,由于有肾源性系统性纤维化的风险,钆对比剂的使用受限[19]。初始T1 Mapping是一种相对快速简单的扫描方式,Karamitsos等[20]研究表明CA患者的心肌初始T1值(1140 ms)明显高于正常组(958 ms,P<0.001)和主动脉瓣狭窄患者(979 ms,P<0.001)(1.5 T ShMOLLI),甚至在不确定淀粉样变性是否累及心脏时,心肌初始T1值也会增加(1048 ms)(图1)。
3.4肥厚型心肌病(hypertrophic cardiomyopathy,HCM)
HCM患者会出现局部或弥漫性的心肌纤维化[21],通常可以通过LGE-CMR评估,LGE多表现为肥厚心肌的斑片状或多发心肌中央强化[22],且LGE的诊断是依据局部损伤心肌与正常区心肌的对比,只能显示局灶性或严重的心肌纤维化,因此很难检测弥漫性心肌纤维化。定量T1 Mapping技术能更好地评价心肌纤维化严重程度,尤其是早期轻度的心肌纤维化[23]。初始T1 Mapping为最简单易行的技术,可用于非增强评估HCM心肌纤维化,Dass等[24]研究表明HCM患者心肌的初始T1值高于正常者(分别为1209 ms、1178 ms,P<0.05,3.0 T ShMOLLI),每个心肌节段的T1值与LGE呈正相关(r=0.32,P<0.005)。增强后T1 Mapping能无创性定量评估弥漫性心肌纤维化,Ellim等[25]测量的HCM患者增强后心肌T1值(498 ms)低于正常组(561 ms)(1.5 T),但增强后HCM肥厚心肌与非肥厚心肌的T1值无差别(分别为503 ms、497 ms,P=0.7),证实了弥漫性心肌纤维化(图2)。
3.5扩张型心肌病(dilated cardiomyopathy,DCM)
DCM患者通常由于胶原积聚在心肌细胞外间隙,而导致不可逆的心肌纤维化[26],可通过T1 Mapping技术定量检测。Puntmann等[27]研究表明DCM患者心肌初始T1值高于正常组(分别为1239 ms、1070 ms,P<0.01,3.0 T MOLLI),初始T1 Mapping诊断DCM的敏感性为100%,特异性为96%,诊断准确度98%,而增强后20 min,T1值DCM组低于正常组(分别为355 ms、440 ms,P<0.01)。Mordi等[28]研究了早期DCM患者(LVEF 45%~55%)与运动生理适应者(LVEF 45%~55%)的心肌T1 Mapping,发现早期DCM患者心肌初始T1值较运动者高(分别为1017 ms、957 ms,P<0.001,1.5 T MOLLI),T1 Mapping可应用于鉴别早期DCM患者与运动员心脏(图3)。
3.6Anderson-Fabry病(Anderson-Fabry disease,AFD)
AFD是由于α-半乳糖苷酶A缺乏,导致鞘糖脂积聚在多个组织器官的细胞内,心脏受累较常见,表现为左室壁向心性肥厚,AFD进一步发展的典型特征为心肌纤维化,首先局限于左室基底段下侧壁的中层心肌,进而蔓延至透壁纤维化[29]。由于脂质能缩短心肌的T1值,AFD患者室间隔初始T1值较正常志愿者低(分别为882 ms、968 ms,P<0.001,1.5 T ShMOLLI),心肌节段分析显示有些AFD患者的左室下侧壁会出现T1值正常或增高,与局部纤维化相关[30]。Pica等[31]发现AFD患者(有、无左室壁增厚)组初始T1值低于正常对照组(分别为853 ms、904 ms、968 ms,P<0.001),左室壁增厚之前T1值的降低与早期超声测得左室舒张或收缩功能改变相关。
图1 心肌淀粉样变性患者T1Mapping图,左室壁心肌初始T1值呈弥漫性增高(1413 ms) 图2 肥厚型心肌病患者初始T1 Mapping图,室间隔心肌肥厚,且初始T1值(1365 ms)明显高于左室侧壁心肌(1281 ms) 图3 扩张型心肌病患者初始T1 Mapping图,前间隔及下间隔心肌T1值增高(箭头),分别为1351 ms、1373 ms 图4 肌营养不良患者T1 Mapping图,左室前侧壁心肌初始T1值增高(1291 ms)(箭头)。正常对照组左室壁心肌初始T1值为1248 ms, 3 T MOLLIFig. 1 T1 Mapping in cardiac amyloidosis patient, the native T1 of left ventricular wall was diffuse increased (1413 ms). Fig. 2 T1 Mapping in HCM, ventricular septal myocardial hypertropthy, and the native T1 value (1365 ms) was higher than LV lateral wall (1281 ms). Fig. 3 T1 Mapping in DCM, the anteroseptal and inferoseptal T1 was increased (arrow), 1351 ms, 1373 ms, respectively. Fig. 4 T1 Mapping in muscular dystrophy patient, the LV anterolateral wall native T1 was increased (1291 ms)(arrow). The native T1 value of left ventricular wall in bealthy volunteer was 1248 ms, 3 T MOLLI.
3.7 其他系统性代谢类疾病(肌营养不良症、甲状腺功能减退症、糖尿病等)
很多系统性疾病会累及心脏,导致心肌结构或功能发生变化。肌营养不良症患者心脏受累时可进展为心肌纤维化,有研究表明Duchenne型肌营养不良症心脏受累患者的心肌初始T1值(1045 ms)高于对照组(988 ms,P=0.001)[32](图4)。Gao等[33]研究发现甲状腺功能减退症(hypothyroidism,HT)患者的心肌初始T1值高于正常对照组,尤其是有心包积液的HT患者,其初始T1值(1216 ms)高于无心包积液的HT患者(1148 ms),且T1值的增加与游离三碘甲腺原氨酸(FT3)呈明显负相关(r=-0.55,P<0.001),因此T1 Mapping可用于评价HT导致的弥漫性心肌损伤。T1 Mapping技术还可定量评估糖尿病患者心肌纤维化的程度,糖尿病患者心肌增强后T1值明显低于正常者(分别为425 ms、504 ms,P<0.001)[34]。
T1 Mapping技术可定量评估心肌组织的变化,但尚存在一些局限性,不同磁场强度及T1 Mapping扫描序列下获得的T1值明显不同,增强后T1值的测量还受对比剂注射剂量、测量时间等影响,缺乏标准的成像及后处理方法,因此很难进行纵向随访及不同研究中心结果间的对比。测量心肌T1值时还会受部分容积效应的影响,如心肌-血池交界或心肌-脂肪交界处[4]。尽管有不足之处,T1 Mapping技术以其无创定量的优势可作为常规CMR检查的一部分,应用于临床怀疑心肌病的患者。
[References]
[1] Everett RJ, Stirrat CG, Semple SIR, et al. Assessment of myocardial fbrosis with T1 mapping MRI. Clin Radiol, 2016, 71(8): 768-778.
[2] Messroghli DR, Radjenovic A, Kozerke S, et al. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med, 2004, 52(1): 141-146.
[3] Messroghli DR, Greiser A, Frohlich M. Optimization and validation of a fully-integrated pulse sequencefor modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging, 2007, 26(4): 1081-1086.
[4] Kellman P, Hansen MS. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn R-eson, 2014, 16(1): 2.
[5] Sussman MS, Yang IY, Fok KH, et al. Inversion group (IG) ftting: a new T mapping method for modifed look-locker inversion recovery (MOLLI) that allows arbitrary inversion groupings and rest periods (including no rest period). Magn Reson Med, 2015, 75(6): 2332-2340.
[6] Piechnik SK, Ferreira VM, Dall'Armellina E, et al. Shortened Modifed Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson, 2010, 12(2): 69.
[7] Roujol S, Weingartner S, Foppa M, et al. Accuracy, precision, and reproducibility of four T1 mappingsequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology, 2014, 272(3): 683-689.
[8] Chow K, Flewitt JA, Green JD, et al. Saturation recovery single-shot acquisition (SASHA) for myocardial T(1) mapping. Magn Reson Med, 2014, 71(16): 2082-2095.
[9] Fernandes JL, Rochitte CE. T1 mapping: technique and applications. Magn Reson Imaging Clin N Am, 2015, 23(1): 25-34.
[10] Mewton N, Liu CY, Croisille P. Assessment of myocardial fbrosis with cardiovascular magnetic resonance. J Am Coll Cardiol, 2011, 57(8): 891-903.
[11] Germain P, El Ghannudi S, Jeung MY, et al. Native T1 mapping of the heart - a pictorial review. Clin Med Insights Cardiol, 2014, 8(Suppl 4): 1-11.
[12] Park CH, Choi EY, Greiser A, et al. Diagnosis of acute global myocarditis using cardiac MRI with quantitative t1 and t2 mapping: case report and literature review. Korean J Radiol, 2013, 14(5): 727-732.
[13] Friedrich MG, Sechtem U, Schulz-Menger J, et al. Cardiovascular magnetic resonance in myocarditis: A JACC white paper. J Am Coll Cardiol, 2009, 53(17): 1475-1487.
[14] Ferreira VM, Piechnik SK, Dall'Armellina E, et al. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson, 2012, 14(1): 42.
[15] Dall'Armellina E, Piechnik SK, Ferreira VM, et al. Cardiovascular magnetic resonance by non contrastT1-mapping allows assessment of severity of injury in acute myocardial infarction. J Cardiovasc Magn Reson, 2012, 15(6): 15.
[16] Messroghli DR, Walters K, Plein S, et al. MyocardialT1 mapping: application to patients withacute and chronic myocardial infarction. Magn Reson Med, 2007, 58(1): 34-40.
[17] Okur A, Kantarci M, Kizrak Y, et al. Quantitative evaluation of ischemic myocardial scar tissu-e by unenhanced T1 mapping using 3.0 Tesla MR scanner. Diagn Interv Radiol, 2014, 20(5): 407-413.
[18] Banypersad SM, Moon JC, Whelan C. Updates in cardiac amyloidosis: a review. J Am Heart Assoc, 2012, 1: e 000364.
[19] Karamitsos TD, Neubauer S. T1 mapping and amyloid cardiomyopathy: how much better can it get? Eur Heart J, 2015, 36(4): 203-205.
[20] Karamitsos TD, Piechnik SK, Banypersad SM, et al. Noncontrast T1 mapping for the diagnosis of car diac amyloidosis. JACC Cardiovasc Imaging, 2013, 6(4): 488-497.
[21] Varnava AM, Elliott PM, Sharma S. Hypertrophic cardiomyopathy:the interrelation of disarray, fbrosis, and small vessel disease. Heart,2000, 84(5): 476-482.
[22] Green JJ, Berger JS, Kramer CM. Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy. JACC Cardiovasc Imaging, 2012, 5(4): 370-377.
[23] Lu M, Zhao S, Yin G, et al. T1 mapping for detection of left ventricular myocardial fibrosis in hypertrophic cardiomyopathy: a preliminary study. Eur J Radiol, 2013, 82(5): e225-231.
[24] Dass S, Suttie JJ, Piechnik SK, et al. Myocardial tissue characterization using magnetic resonance noncontrast t1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging, 2012, 5(6): 726-733.
[25] Ellims AH, Iles LM, Ling LH, et al. Diffuse myocardial fibrosis in hypertrophic cardiomyopathy can be identified by cardiovascular magnetic resonance, and is associated with left ventricular diast olicdysfunction. J Cardiovascular Magnetic Resonance, 2012, 14(3): 76.
[26] Siepen FA, Buss SJ, Messroghli D, et al. T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantifcation of diffuse myocardial fibrosis and comparison with endomyocardi al biopsy. Eur Heart J Cardiovasc Imaging, 2015, 16(2): 210-216.
[27] Puntmann VO, Voigt T, Chen Z, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging, 2013, 6(4): 475-484.
[28] Mordi I, Carrick D, Bezerra H. T1 and T2 mapping for early diagnosis of dilated non-ischaemic cardiomyopathy in middle-aged patients and differentiation from normal physiological adaptation. Eur Heart J Cardiovasc Imaging, 2015, 17(7): 797-803.
[29] Seydelmann N, Wanner C, Stork S. Fabry disease and the heart. Best Pract Res Clin Endocrin-ol Metab, 2015, 29(2): 195-204.
[30] Sado DM, White SK, Piechnik SK, et al. Identification and assessment of Anderson-Fabry disease bycardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging, 2013, 6(3): 392-398.
[31] Pica S, Sado DM, Maestrini V, et al. Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance. J Cardiovasc Magn Reson, 2014, 16(1): 99.
[32] Soslow JH, Damon SM, Crum K, et al. Increased myocardial native T1 and extracellular volume in patients with Duchenne muscular dystrophy. J Cardiovasc Magn Reson, 2016, 18(1): 5.
[33] Gao X, Liu M, Qu A, et al. Native magnetic resonance T1-mapping identifes diffuse myocar-dial injury in hypothyroidism. PLoS One,2016, 11: e0151266.
[34] Ng AC, Auger D, Delgado V, et al. Association between diffuse myocardial fbrosis by cardi-ac magnetic resonance contrast-enhanced T1 mapping and subclinical myocardial dysfunction in diabetic patients a pilot study. Circ Cardiovasc Imaging, 2012, 5(1): 51-59.
Cardiac longitudinal relaxation time (T1) imaging technique and its clinical applications
RAN Ling-ping, XIA Li-ming*
Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
*Correspondence to: Xia LM, E-mail: cjr.xialiming@vip.163.com
T1 Mapping technique can obtain the myocardial T1 value quantitatively, and evaluate the myocardial histological features in various cardiomyopathy accurately. Many image acquisition technologies have been used to T1 Mapping sequences, and the native T1 which may refect myocardial fbrosis has good reproducibility. It may detect diffuse myocardial injury by measuring native T1 value and post contrast T1 value. This review aims to introduce the T1 Mapping technique and its clinical applications.
Cardiac imaging techniques; Magnetic resonance imaging
20 June 2016, Accepted 16 Agu 2016
国家自然科学基金面上项目(编号:81471637)
华中科技大学同济医学院附属同济医院放射科,武汉 430000
夏黎明,E-mail:cjr.xialiming@ vip.163.com
2016-06-20接受日期:2016-08-16
R445.2;R711.75
A
10.12015/issn.1674-8034.2016.09.017