也在(a,b)上单调上升(下降).而且,若f′/g′的单调性是严格的,则F和G的单调性也是严格的.
引理 2.2设r(n)和s(n)(n=0,1,2,…)都为实数,幂级数
接下来,引理2.3(i),(ii)参见文[5]引理5.2(1),(2),引理2.3(iii)参见文[15]引理2.11(1),引理2.3(iv)参见文[5]引理5.4(1).
引理2.3对任意的r∈(0,1)及a∈(0,1/2),则
3 主要结果证明
F1(r)=f1(r)/f2(r),f1(0)=f2(0)=0.
由此,根据式(2)、引理2.1、引理2.3(ii)便知函数F1(r)的单调性.
显然,F1(1-)=0,F1(0+)=2(1-a)/π.
(ii) 令
f3(r)=a[Ka(r)-Ea(r)]-(1-a)[Ea(r)-r′2Ka(r)],
f4(r)=[Ea(r)-r′2Ka(r)][Ka(r)-Ea(r)],
则
F2(r)=f3(r)/f4(r),f3(0)=f4(0)=0.
(9)
根据引理2.3(i)、引理2.3(iii)及引理2.3(iv)可知,函数f5(r)在(0,1)上严格单调下降.因此,由式(4)、式(9)、引理2.1可得F2(r)的单调性.
其次,由引理2.1、引理2.3可知,极限值
(iii)由式(1)-(4)可知
(10)
由式(2)及文[3]2.2(5)可知
故
这处伤口在右腰偏下方向,约有15公分,但伤口又被人用红色丝线很整齐地缝了起来,如同趴了一条巨大的蜈蚣。老马说:“这不是医院缝的,但是缝的人显然很细心。”天气仍然是热,但秦明月徒然感到一阵寒意,他越来越感觉到这事非同小可。老马又说:“这个伤口具体是什么原因还有待检验。”
(11)
利用式(10),(11)级数的展开式,可得
令c1(n)=a1(n)/b1(n),则有
⟺(2n+5)(n+a)(n-a+2)-(2n+1)(n+2)2
=-2(a-1)2n-5(a-1)2+1<0.
也即c1(n)关于n∈严格单调下降.因此,由引理2.2知,F3(r)在(0,1)上也是严格单调下降.易得:
F3(0+)=3(1-a)π/8,F3(1-)=sin(aπ)/2.
定理2的证明
(i) 令g1(r)=π/2-Ea(r),g2(r)=1-[r′2arthr]/r,则
G1(r)=g1(r)/g2(r), g1(0)=g2(0)=0.
求导得
其中F3(r)由定理1.(3)定义.故由定理1(3)及引理2.1可知,G1(r)在(0,1)上严格单调下降.由式(3)、引理2.1、定理1(3)易得
显然,不等式(7)成立.
(ii)对G2(r)进行求导得
r′G′2(r)=g3(r)=g4(r)+g5(r),
其中
g5(r)=(1-2r2)Ka(r)K′a(r).
和
rr′2g5(r)=2(1-a)(1-2r2)g6(r)-4r2r′2Ka(r)K′a(r),
因此,对g3(r)求导得
其中g7(r)=g6(r)g8(r),g8(r)=1-2r2.
注(i)当a=1/2时,定理2(1)推广了文[14]定理1.2(1)中关于第二类完全椭圆积分的结论,对广义Hersch-Pfluger偏差函数的精确上界的初等估计有重要意义.
(ii)当a=1/2时,定理2(2)推广了文[13]引理2.1(1)中关于第一类完全椭圆积分的结论,并对广义Ramanujan模方程解的不等式的证明有重要作用.
[1]Abramowitz M,Stegun I A. Handbook of mathematical functions with formulas,graphs and mathematical tables[M] . New York:Dover Publication,1965: 253-294.
[2]王飞,周培桂,马晓艳.Γ-函数的几个性质及应用[J]. 浙江理工大学学报,2014,31(5):576-579.
[3]Qiu S L,Vuorinen M. Handbook of complex analysis:special function in geometric function theory [M].Elsevier B.V North Holland Press:2005:621-659.
[4]Anderson G D,Vamanamurthy M K, Vuorinen M. Conformal invariants, inequalities, and quasiconformal mappings [M].New York:John Wiley & Sons,1997:32-47.
[5]Anderson G D, Qiu S L,Vamanamurthy M K, Vuorinen M. Generalized elliptic integrals and modular equations[J]. Pacific J.Math,2000,192(1): 1-37.
[6]Lawden D F. Elliptic functions and applications[ M].NewYork:Springer-Verlng, 1989:50-64.
[7]Qiu S L, Vuorinen M. Landen inequalities for Hypergeometric function[J].Nagoya Math.J,1999 ,154:31-56.
[8]Qiu S L, Vuorinen M. Duplication inequalities for the ratios of hypergeometric functions[J].Forum Math, 2000,12: 109-133.
[9]马晓艳,裘松良.广义椭圆积分的性质[J].浙江理工大学学报,2007,24(2):200-205.
[10]Qiu S L. Grotzsch ring and Ramanujan's modular equations[J]. ActaMathecatica,Sinica,New Series, 2000, 43(2):283-290.
[11]Ma X Y, Chu Y M, Wang F. Monotonicity and inequalities for the generalized distortion function[J].Acta Mathematica Scientia,2013,33B(6):1759-1766.
[12]Wang G D, Zhang X H, Chu Y M. Inequalities for the generalized elliptic integrals and modular functions [J]. J.Math.Anal.Appl,2007, 331:1275-1283.
[13]Anderson G D, Qiu S L, Vuorinen M. Modular equations and distortion functions[J]. Jounal of Ramanujan, 2009,18:147-169.
[14]Wang M K, Qiu S L, Chu Y M, Jiang Y P. Generalized Hersch-Pfluger distortion function and complete integrals[J].J.Math.Anal.Appl,2012, 385:221-229.
[15]屠国燕.广义椭圆积分与Ramanujan模方程解的性质[D].浙江理工大学硕士学位论文,杭州:浙江理工大学,2010.
Monotonicity and Inequalities for The Generalized Elliptic Integrals
WANGFei1,ZHOUPei-gui2,MAXiao-yan3
(1. Mathematics Teaching and Research Section, Zhejiang Institute of Mechanical and Electrical Engineering, Hangzhou 310053, China;2. College of Science and Art, Zhejiang Sci-Tech University, Hangzhou 311121, China;3. School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China)
Some monotonicity properties of certain combinations of these functions defined in terms of the generalized elliptic integrals and some elementary functions are mainly obtained by monotone L’ Hpital rule, and from which some precise inequalities are obtained. Meanwhile, some known results are generalized for the generalized elliptic integrals, these results will be used to study the generalized Grötzsch ring function, Ramanujan’s modular equations and the solutions of them.
monotonicity; generalized elliptic integrals; precise inequalities; modular equation
2015-12-10;[修改日期] 2016-03-06
国家自然科学基金资助项目(11171307);浙江省教育厅科研项目基金(Y201328799);浙江机电职业技术学院科研项目(A027116026)
王飞(1985-),男,硕士,讲师,从事拟共形映射及特殊函数研究.Email:wf509529@163.com.
马晓艳(1979-),女,硕士,副教授,从事拟共形映射及特殊函数研究.Email:mxy@zstu.edu.cn
O174
C
1672-1454(2016)03-0077-06