王春艳,关宝玲
莱布尼兹-n-代数的Frattini-子代数
王春艳,关宝玲
(齐齐哈尔大学 理学院,黑龙江 齐齐哈尔 161006)
研究了莱布尼兹-代数的Frattini-子代数的性质,得到了莱布尼兹-代数的Frattini-子代数的几个性质定理.
莱布尼兹-代数;Frattini-子代数;极大理想
定义1[6]184设是一个向量空间,且带有-线性括号运算,如果满足等式,则称是莱布尼兹-代数.
(ii)它的证明与(i)类似. 证毕.
必要性.由定义2,结论显然成立. 证毕.
根据定理1可得到推论.
由结果(i)易知,结果(ii)和(iii)成立. 证毕.
[1] Bai R P,Bai C M,Wang J X.Realizations of 3-Lie algebras[J].J Math Phys,2010,51:063505
[2] Alekseevsky D,Guha P.On decomposability of Nambu-Poisson Tensor[J].Acta Mathematica Universitatis Comenianae,1996, 65:1-9
[3] Gautheron P.Simple facts concerning Nambu algebras[J].Commun Math Phys,1998,195:417-434
[4] Bagger J,Lambert N.Gauge symmetry and supersymmetry of multiple- branes[J].Phys Rev,2008,77:065008
[5] Ho P,Hou R,Matsuo Y.Lie 3-algebra and multiple M2-branes[J].arXiv,2010,21:0804
[6] Casas J M,Loday J L,Pirashvili T.Leibniz-Algebras[J].Forum Math,2002,14(2):189-207
[9] Bai R P,Chen L Y,Meng D J.On Frattini subalgebra of-Lie algebras[J].Acta Math Sinica Ser,2007,23(5):847-856
The Frattini subalgebras of Leibniz-n-algebras
WANG Chun-yan,GUAN Bao-ling
(School of Science,Qiqihar University,Qiqihar 161006,China)
Researched some properties of the Frattini subalgebras for Leibniz--algebras,and several property theorems for the Frattini subalgebras of Leibniz--algebras were obtained.
Leibniz--algebras;Frattini subalgebras;maximal ideal
1007-9831(2016)10-0001-02
O152.5
A
10.3969/j.issn.1007-9831.2016.10.001
2016-08-01
国家自然科学基金项目(11301061;11301062); 齐齐哈尔大学青年教师科学技术类科研启动支持计划项目(2011k-Z05)
王春艳(1965-),女,黑龙江齐齐哈尔人,副教授,从事代数学研究.E-mail:wangcy9933@163.com