车升国, 袁 亮, 李燕婷, 林治安, 李燕青, 赵秉强*, 沈 兵
(1 农业部植物营养与肥料重点实验室, 中国农业科学院农业资源与农业区划研究所, 北京 100081;2 中国农业科学院德州盐碱土改良实验站, 山东德州 253015; 3 中海石油化学股份有限公司, 北京 100029)
我国主要麦区小麦产量形成对磷素的需求
车升国1,2, 袁 亮1, 李燕婷1, 林治安2, 李燕青1, 赵秉强1*, 沈 兵3
(1 农业部植物营养与肥料重点实验室, 中国农业科学院农业资源与农业区划研究所, 北京 100081;2 中国农业科学院德州盐碱土改良实验站, 山东德州 253015; 3 中海石油化学股份有限公司, 北京 100029)
小麦产量; 磷素吸收; 需磷量; 响应特征
近年来,有关小麦的磷肥施用效果[5]、 磷素的吸收[6]、 磷肥利用率[7-8]等已开展广泛研究,但研究主要集中于田块尺度,或小区域、 小样本数田间试验,缺乏大尺度、 大样本数小麦磷素吸收规律及差异研究[9]。Yue等[10]总结我国1395个样点氮素需求与产量关系表明,小麦生产100 kg籽粒需氮量随产量的增加而逐渐降低,但大样本数据下小麦产量与磷素的需求规律性还未见报道。本文收集了2000年后文献中田间试验数据,分析了我国小麦主产区黄淮海冬麦区、 长江中下游冬麦区和西北冬春兼播麦区小麦产量、 不同部位磷含量和吸磷量,以及100 kg小麦籽粒需磷量的区域差异,计算了不同小麦产量水平与籽粒和秸秆磷含量以及和100 kg籽粒需磷量的关系,为我国小麦推荐施肥模型等提供科学的区域参数,为指导小麦区域合理施肥提供理论依据与科学参考。
1.1研究区域
在我国小麦种植业区划、 中国化肥区划基础上[11-12],根据2013年我国小麦区域生产布局和产量情况,选择我国小麦3个主要生产区作为研究对象,分别为黄淮海冬(秋播)麦区(HH)、 长江中下游冬(秋播)麦区(CR)和西北冬春兼播麦区(NW)[13]。2013年三个小麦产区小麦播种面积21783千公顷,占我国小麦总播种面积的90.32%; 小麦产量11485万吨,占我国小麦总产量的94.20%[14]。
黄淮海冬(秋播)麦区主要包括山东、 河南、 河北、 北京、 天津及江苏和安徽北部。本区地处暖温带,气候温和,属半湿润性或半干旱季风气候,土壤类型以褐土和潮土为主,小麦主要为冬小麦(冬小麦-夏玉米轮作)。2013年本区小麦播种面积和产量分别占全国的57.44%和66.64%。长江中下游冬(秋播)麦区包括浙江、 湖北、 湖南、 江西及安徽和江苏南部等。本区位于北亚热带季风区,气候温暖湿润,热量丰富,土壤类型主要为水稻土、 棕壤等,小麦主要为冬小麦(冬小麦-水稻或其他作物轮作)。2013年本区小麦播种面积和产量占全国的14.53%和13.74%。西北冬春兼播麦区包括陕西、 山西、 新疆、 宁夏、 甘肃和内蒙古东部区域。本区处于中温带内陆地区,属大陆性气候,冬季寒冷,夏季炎热,土壤以棕钙土、 灰钙土、 灌漠土、 灰漠土等为主。小麦有冬小麦和春小麦。2013年本区小麦播种面积和产量分别占全国的18.35%和13.82%[14]。
1.2数据来源
数据来源包括“十一五”、 “十二五”国家科技支撑计划课题试验数据,2000年后公开发表的期刊文献、 硕博毕业论文、 书籍等。共收集产量数据5484组、 籽粒磷吸收量680组、 秸秆磷吸收量651组、 籽粒磷含量1096组、 秸秆磷含量887组、 植株磷积累量1397组和100 kg籽粒需磷量数据1574组。详细样点分布见表1和参考文献[13]。
1.3数据处理
2.1不同主产区小麦磷素吸收规律
社会福利政策质量评价是保障和促进社会福利政策质量的重要环节。科学的评价活动能够发现社会福利政策过程中存在的问题,以便及时总结经验,纠正错误,从而公正地判断某一政策本身的价值和质量,为延续、革新或终结政策提供依据。因此,社会福利政策质量评价不仅有利于检验社会福利政策的效果、效率及效益,也有利于提高决策的民主化、科学化水平和政策质量。
在不同麦区,小麦产量以黄淮海冬麦区最高 (7.07 t/hm2,n=2976),长江中下游冬麦区次之 (5.60 t/hm2,n=1059),西北冬春兼播麦区最低 (4.71 t/hm2,n=1389)。同样,小麦地上部吸磷总量以黄淮海冬麦区最高,平均为32.2 kg/hm2(n=716),长江中下游冬麦区次之,为22.3 kg/hm2(n=167),西北冬春兼播麦区最低,仅为19.4 kg/hm2(n=487)。籽粒和秸秆磷吸收量也均以黄淮海冬麦区最高,平均分别为21.3 kg/hm2(n=289)和8.7 kg/hm2(n=289),长江中下游冬麦区次之,为15.8 kg/hm2(n=8)和5.4 kg/hm2(n=8),西北冬春兼播麦区最低,仅为13.8 kg/hm2(n=382)和2.7 kg/hm2(n=353)。籽粒磷含量以长江中下游冬麦区最高,为0.43% (n=22),黄淮海冬麦区居中,为0.33%,西北冬春兼播麦区最低,为0.30%。秸秆磷含量则以黄淮海冬麦区最高,为0.09% (n=486),长江中下游冬麦区次之,为0.08% (n=8),西北冬春兼播麦区最低,仅为0.06% (n=370)。这一结果表明,小麦产量与磷素吸收量相关。
表1 小麦主产区小麦产量、 磷吸收累积及100 kg籽粒需磷量
注(Note): HH—Huanghuaihai winter wheat planting area; CR—Changjiang river winter wheat planting area; NW—Northweat China spring-winter wheat planting area.
2.2小麦磷素吸收特征对产量的响应
图1 小麦主产区及全国小麦产量与地上部磷吸收总量的相关关系Fig.1 Relationship of shoot P uptakes and wheat yields in the main winter wheat region and whole China[注(Note): HH—黄淮海冬麦区 Huanghuaihai winter wheat planting area; CR—长江中下游冬麦区 Changjiang River winter wheat planting area; NW—西北冬春小麦兼播区 Northweat China spring-winter wheat planting area; All— 全国 All China.]
图2 小麦不同产量水平下100 kg籽粒需磷量Fig.2 P requirement per 100 kg wheat grain in different yield ranges in China[注(Note): 图中箱体中部实线和虚线分别代表中值和平均值,箱体上下边代表75%和25%位点,上下横线代表90%和10%位点,上下圆点代表95%和5%位点Solid and dashed lines in the boxes indicate the median and mean, respectively. The box boundaries indicate the 75th quartiles and 25th quartiles, the whisker caps indicate 90th and 10th percentiles, and the circles represent the 95th and 5th percentiles.]
图3 我国小麦不同产量水平籽粒磷含量和秸秆磷含量Fig.3 P contents in both grains and straw of wheat at different yield ranges in China[注(Note): 图中箱体中部实线和虚线分别代表中值和平均值,箱体上下边代表75%和25%位点,上下横线代表90%和10%位点,上下圆点代表95%和5%位点Solid and dashed lines in the boxes indicate the median and mean, respectively. The box boundaries indicate the 75th quartiles and 25th quartiles, the whisker caps indicate 90th and 10th percentiles, and the circles represent the 95th and 5th percentiles.]
我国田间试验的小麦产量、 地上部吸磷总量、 籽粒吸磷量、 秸秆吸磷量、 籽粒磷含量和秸秆磷含量变异性大,区域差异明显。其对应参数全国平均值分别为6.18 t/hm2、 26.4 kg/hm2、 17.0 kg/hm2、 5.4 kg/hm2、 0.32%和0.08%,变异系数分布为33.1%、 58.6%、 55.1%、 94.8%、 34.3%和75.0%。除籽粒磷含量外,小麦产量、 地上部磷吸收量、 籽粒磷吸收量、 秸秆磷吸收量和秸秆磷含量均以黄淮海麦区最高,长江中下游冬麦区次之,西北冬春麦区最低。
[1]赵秉强. 施肥制度与土壤可持续利用[M]. 北京: 科学出版社, 2012.
Zhao B Q. Fertilization systems and land use sustainability[M]. Beijing: Science Press, 2012.
[2]李庆逵, 朱兆良, 于天仁. 中国农业持续发展中的肥料问题[M]. 南昌: 江西科学技术出版社, 1988.
Li Q K, Zhu Z L, Yu T R. Fertilizer issue of sustainable agriculture development in China[M]. Nanchang: Jiangxi Science and technology Press, 1988.
[3]张福锁,王激情,张卫峰,等. 中国主要粮食作物肥料利用率现在与提高途径[J]. 土壤学报, 2008, 915-924.
Zhang F S, Wang J Q, Zhang W F,etal. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 915-924.
[4]李东坡, 武志杰. 化学肥料的土壤生态环境效应[J]. 应用生态学报, 2008, 19(5): 1158-1165.
Li D P, Wu Z J. Impact of chemical fertilizers application on soil ecological environment[J]. Chinese Journal of Applied Ecology, 2008, 19(5): 1158-1165.
[5]何晓雁. 黄土高原旱地长期施磷肥对土壤磷素循环的影响[D]. 杨凌: 西北农林科技大学硕士学位论文, 2012.
He X Y. Effect of long-term phosphor fertilization on soil phosphorus cycling in dry land on Loess Plateau [D]. Yangling: MS Thesis of Northwest A&F University, 2012.
[6]姜宗庆, 封超年, 黄联联, 等. 施磷量对小麦物质生产及吸磷特性的影响[J]. 植物营养与肥料学报, 2006, 12(5): 628-634.
Jiang Z Q, Feng C N, Huang L L,etal. Effects of phosphorus application on dry matter production and phosphorus uptake in wheat (TriticumaestivumL.)[J]. Plant Nutrition and Fertilizer Science, 2006, 12(5): 628-634.
[7]阳显斌, 张锡洲, 李廷轩, 等. 磷素籽粒生产效率不同的小麦品种磷素吸收利用差异[J]. 植物营养与肥料学报, 2011, 17(3): 525-531.
Yang X B, Zhang X Z, Li T X,etal. Differences of phosphorus uptake and utilization in wheat cultivars with different phosphorus use efficiency for grain yield[J]. Plant Nutrition and Fertilizer Science, 2011, 17(3): 525-531.
[8]高静, 张淑香, 徐明岗, 等. 长期施肥下三类典型农田土壤小麦磷肥利用效率的差异[J]. 应用生态学报, 2009, 20(9): 2142-2148.
Gao J, Zhang S X, Xu M G,etal. Phosphorus use efficiency of wheat on three typical farmland soils under long-term fertilization[J]. Chinese Journal of Applied Ecology, 2009, 20(9): 2142-2148.
[9]串丽敏. 基于产量反应和农学效率的小麦推荐施肥方法研究[D]. 北京: 中国农业科学院博士学位论文,2013.
Chuan L M. Methodology of fertilizer recommendation based on yield response and agronomic efficiency for wheat [D]. Beijing: PhD Dissertation, China Academy of Agricultural Sciences, 2013.
[10]Yue S C, Meng Q F, Zhao R F,etal. Change in nitrogen requirement with increasing grain yield for winter wheat[J]. Agronomy Journal, 2012, 104: 1687-1693.
[11]赵广才. 中国小麦种植区划研究(一)[J]. 麦类作物学报, 2010, 30(5): 886-895.
Zhao G C. Study on Chinese wheat planting regionalization (一)[J]. Journal of Triticeae Crops, 2010, 30(5): 886-895.
[12]中国农业科学院土壤肥料研究所. 中国化肥区划[M]. 北京: 中国农业科技出版社, 1986. 36-66.
Soil and Fertilizer Institute, Chinese Academy of Agricultural Sciences. Zone of fertilizer in China[M]. Beijing: China Agricultural Science and Technology Press, 1986. 36-66.
[13]车升国, 袁亮, 李燕婷, 等. 我国主要麦区小麦氮素吸收及其产量效应[J]. 植物营养与肥料学报, 2016, 22 (2): 287-295.
Che S G, Yuan L, Li Y T,etal. Characteristic of N uptake and it response to grain yield of wheat in main wheat production regions in China[J]. Plant Nutrition and Fertilizer Science, 2016, 22 (2): 287-295.
[14]中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2014.
National Bureau of Statistics of the People’s Republic of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2014.
[15]Liu M Q, Yu Z R, Liu Y H,etal. Fertilizer requirements for wheat and maize in China: the QUEFTS approach[J]. Nutrient Cycling in Agroecosystems, 2006, 74: 245-258.
[16]Liu X Y, He P, Jin J Y,etal. Yield gaps, indigenous nutrient supply, and nutrient use efficiency of wheat in China[J]. Agronomy Journal, 2011, 103: 1452-1463.
[17]车升国. 区域作物专用复合(混)肥料配方制定方法与应用 [D]. 北京: 中国农业大学博士论文, 2015.
Che S G. Design method and application of formula of regional crop-based compound fertilizer [D]. Beijing: PhD Dissertation, China Agricultural University, 2015.
[18]鲁如坤. 土壤植物营养学原理与施肥[M]. 北京: 化学工业工出版社,1998. 1-3.
Lu R K. Principles of plant nutrient and fertilization[M]. Beijing: Chemical Industry Press, 1998. 1-3.
[19]Zhang Y, Hou P, Gao Q,etal. On-farm estimation of nutrient requirements for spring corn in North China[J]. Agronomy Journal, 2012, 104: 1437-1442.
[20]Xu X P, He P, Pampolino M F,etal. Nutrient requirements for maize in China based on QUEFTS analysis[J]. Field Crops Research, 2013. 115-125.
[21]Buresh R J, Pampolino M F, Witt C. Field-specific potassium and phosphorus balances and fertilizer requirements for irrigated rice-based cropping systems[J]. Plant and Soil, 2010, 335, 35-64.
[22]Witt C, Dobermann A, Abdulrachman Setal. Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia[J]. Field Crops Research, 1999, 63: 113-138.
[23]党红凯,李瑞奇,李雁鸣,等. 超高产栽培条件下冬小麦对磷的吸收、 积累和分配. 植物营养与肥料学报, 2012, 18(3): 531-541.
Dang H K, Li R Q, Li Y M,etal. Absorption, accumulation and distribution of phosphorus in winter wheat under super-highly yielding conditions[J]. Plant Nutrition and Fertilizer Science, 2012, 18(3): 531-541.
[24]于振文, 田奇卓, 潘庆民, 等. 黄淮麦区冬小麦超高产栽培的理论与实践[J]. 作物学报, 2002, 28(5): 577-585.
Yu Z W, Tian Q Z, Pan Q M,etal. Theory and practice on cultivation of super high yield of winter wheat in the wheat fields of Yellow river and Huaihe river districts[J]. Acta Agronomica Sinica, 2002, 28(5): 577-585.
Phosphorous requirement for yield formation of wheat in main wheat production regions of China
CHE Sheng-guo1,2, YUAN Liang1, LI Yan-ting1, LIN Zhi-an2, LI Yan-qing1, ZHAO Bing-qiang1*, SHEN Bing3
(1MinistryofAgricultureKeyLaboratoryofPlantNutritionandFertilizer,InstituteofAgriculturalResourcesandRegionalPlanning,ChineseAcademyofAgriculturalSciences,Beijing100081,China; 2DezhouExperimentalStationofChineseAcademyofAgriculturalSciences,Dezhou,Shandong253015; 3ChinaBlueChemicalLtd.,Beijing100029,China)
【Objectives】 Phosphorous uptake of wheat and the regional variations is the base to guild reasonable phosphorous fertilization strategy. This paper aimed to investigate the P absorption amount and the response to phosphorous fertilization in the main wheat-planting regions. 【Methods】 Data were collected from the published papers and field experiments, in which the wheat yields, P absorption in both grains and straw, P uptakes in the shoots and P concentrations in grains and straw were analyzed in the Huang-Huang-Hai winter wheat planting region (HH), Northwest China spring-winter wheat planting region (NW) and Changjiang River winter wheat planting region (CR), and the wheat P absorption under different yield levels was studied. 【Results】 The results showed that wheat grain yields, P contents in grains and straw, above-ground P uptake, P absorptions in both grains and straw and P amounts needed to produce per 100 kg grains had significant regional variations. The mean grain yield in China was 6.18 t/hm2with a variation coefficient of 33.1%. The mean values of P concentrations in both grains and straw were 0.32% and 0.08%, and the corresponding variation coefficients were 34.3% and 75.0%. The shoot P uptake and P absorption in grains and in straw were 26.4 kg/hm2, 17.0 kg/hm2and 5.4 kg/hm2with the variation coefficients of 58.6%, 55.1% and 94.8%, respectively. Excluding the P concentrations in grains, all other parameters were highest in HH, and lowest in NW. The averaged P amount needed to produce 100kg grain was 0.46 kg with the variation of 37.0% in China, and HH had the highest value of 0.50 kg, while the amounts for YR and NW were 0.44 kg and 0.41, respectively. As increasing wheat yield, N requirement per 100 kg grain was increased consequently, and the N requirements were 0.41 kg, 0.43 kg, 0.50 kg, 0.52 kg for wheat yields <4.50 t/hm2, 4.50-6.50 t/hm2, 6.50-8.50 t/hm2, and >8.50 t/hm2, respectively. The P concentrations in grains maintained the certain levels with 0.32%, 0.31%, 0.31% and 0.33%, respectively for the corresponding yield levels. The P concentrations in straw increased with the corresponding values of 0.05%, 0.07%, 0.11% and 0.12% for the grain yield levels. 【Conclusions】 Differences of temperature, water and soil in the wheat-planting regions caused the differences of P absorption characteristics. For improving wheat yield and N use efficiency, wheat grain yield and P absorption for a region should be taken into account.
wheat yield; P uptake; P requirement; response characteristic
2015-01-08接受日期: 2015-09-24网络出版日期: 2016-05-23
国家“十二五”科技支撑计划项目(2011BAD11B05, 2013BAD05B04)资助。
车升国(1983—), 男, 山东临沂人, 博士, 助理研究员, 主要从事农田土壤肥力研究。
Tel: 010-82108664, E-mail: cheshengguo@caas.cn。*通信作者 Tel: 010-82108658, E-mail: zhaobingqiang@caas.cn
S143.5; S158
A
1008-505X(2016)04-0869-08