韦保娟 任虹
[摘要] 核酸适配体是一类能够高灵敏、高特异性地与靶标相结合的寡核普酸序列,包括小分子化合物、细胞膜表面受体、蛋白质、金属离子等,具有超强的结合能力、低免疫原性、高稳定性等特点,同时能与各种药物及载体结合,构建多元复合靶向给药系统,目前已用于肿瘤的靶向治疗。本文综述核酸适配体在临床诊断领域中的最新研究进展,为肿瘤疾病的靶向治疗提供新的干预方向,同时也为核酸适配体更为广阔的应用提供参考。
[关键词] 核酸适配体;临床诊断;研究进展
[中图分类号] R73-3 [文献标识码] A [文章编号] 1674-4721(2016)03(c)-0025-03
[Abstract] Aptamers is a class oligonucleotide sequence combinated with target of high sensitivity and high specificity,including small molecules,cell surface receptors,proteins,metal ions,etc.It has superior binding capacity,low immunogenicity,high stability and other characteristics,and can be combined with a variety of drugs and carriers to construct multiple composite targeted drug delivery system.At present,it has been used in cancer targeted therapy.This paper has reviewed the research progress of aptamers in clinical diagnostic field for the latest,to provide a new direction for the treatment of neoplastic diseases targeted interventions,while also to provide a reference for broader application prospects of aptamers.
[Key words] Aptamers;Clinical diagnosis;Research progress
核酸适配体是一类经过人工进化而筛选出的单链寡核苷酸片段,能特异、高亲和力地识别靶分子。自核酸适配体被发现以来,人类对于核酸领域有了新的认识,其不仅能够编码生命的遗传信息,还可作为一种新的特异的识别元件[1-2]。当今,有学者已筛选出不同领域靶分子的核酸适配体,上至小分子的环境毒物,下至复杂多变的病原细菌,核酸适配体以其高灵敏性在临床诊断中发挥着十分重要的作用。本研究通过综述核酸适配体在临床诊断领域中的研究进展,以期为发展肿瘤靶向治疗的新技术和新药物提供参考。
1 核酸适配体的特点
适配体作为一种寡合甘酸序列的识别分子,与传统的抗体比较有其自身的优势及特点:①高亲和性和特异度;②作用的靶分子范围广泛,从无机金属的小分子到生物领域的大分子;③进行筛选所需周期较短,整个过程能够依赖自动化,简便快捷;④稳定程度高,降解速度较慢,常温下可以保存较长时间而不变性;⑤多为小分子,较易通过细胞膜到达细胞内来发挥多功能特性,参与较多反应[3-6]。另外,核酸适配体能够广泛作用于细胞膜表面受体、小分子化合物、金属离子、蛋白质等靶标,结合能力与抗体相近,甚至较抗体强,同时其具有较好的低免疫原性及较高的稳定性等特点,可结合各种药物及载体构建的多元复合靶向给药系统,以此来达到靶向治疗肿瘤的作用。
2 肿瘤标志物
肿瘤标志物是在肿瘤细胞中有所表达,而在正常细胞中不表达的一种生化分子。通过对某一肿瘤标志物的适配体进行特异筛选,进而发挥其靶向诊断的目的。
2.1 甲胎蛋白(AFP)
有学者采用SELEX技术从随机单链核酸序列库中筛选出特异性与靶物质高度亲和的α-AFP的RNA适配体,该适配体可下调AFP诱导的细胞中原癌基因的表达[7-10]。在AFP相关联的肿瘤中,此适配体可被用来诊断或治疗疾病。AFP-L3本质是一种蛋白,作为AFP的异质体,其分离出的DNA适配子在肝细胞癌诊断中的作用明显。
2.2 黏蛋白1(Mucin1,MUC1)
MUC1作为Ⅰ型跨膜蛋白的一种多异常表达于肿瘤细胞中。有学者利用MUC1的DNA适配体为载体,构建了DOX-Apt复合物,结果显示,DOX-Apt复合物不但使机体对乳腺癌细胞系中细胞杀伤力强,正常细胞的存活率也有所提高,安全性较好[11-12]。将MUC1适配体的cDNA等部件组装到金电极体,可以依靠新的电化学竞争,此时采用电化学溶出法便可对靶细胞进行检测。研究显示,两种特异性核酸适配体如TLSlc、TLS11a能够各自通过DNA链偶联于电极体表,形成特有的生物界面,此类DNA有些具有柔性结构,有些具有刚性结构,其提高了核酸适配体捕获肿瘤细胞的效率,减小了界面间的位阻力[13]。当有靶细胞存在时,细胞表面过表达的MUC1能与cDNA竞争性结合适配体,使得cDNA和适配体组成的双链DNA出现变性,在电极端释放出Apt-Ds复合物。利用QDs上的荧光能够清晰地看到适配体对靶细胞的识别。
2.3 癌胚抗原(CEA)
CEA作为大肠癌组织代谢的一种糖蛋白,一般提取于结肠腺及胎儿肠,目前已逐渐在其他胃肠道肿瘤的检测中得到应用。其在正常胚胎的消化管组织及消化系统癌中均可表达[14-15],所以CEA可被认为是广谱性的肿瘤标志物。研究报道指出,有学者已筛选出能对人癌胚抗原进行特异性结合的DNA适配体,为肿瘤的诊断指明了一种新的思维方向。
2.4 前列腺特异性抗原(PSA)
正常生理条件下PSA主要存在于前列腺组织中,如果前列腺出现病变,血清中的PSA浓度迅速升高。血清PSA作为前列腺癌早期筛查较为重要的指标,已被广泛用于前列腺癌的诊断、分期及治疗后监测。当有PSA存在时,适配体与PSA结合,使金纳米复合物聚集成大粒子,在一定程度上增大了共振光的强度[16],同时依据共振光散射光谱的分析结果能够对血液样本中的PSA进行检测。
3 细胞因子及其受体
3.1 血管内皮生长因子(VEGF)
VEGF作用于血管内皮细胞,促进肿瘤的血管形成,参与肿瘤的发生、发展过程[17-18]。有学者通过构建高灵敏、高特异度且能够同时对肿瘤标志物MUC1和VEGF进行检测的电化学传感器,当两者同时表现时,适配体能够与之相结合,使其长双链发生变化,由此出现电化学信号,且电信号此时是最强[19-20]。
3.2 血小板源生长因子(PDGF)
PDGF作为生长因子家族的一员,过度表达于恶性肿瘤中。Liao等[21]采用PDGF-BB的DNA适配体,将其构建为分子靶标,利用荧光共振来检测PDGF,灵敏度极高。Dam等[22]将20 mg/kg环磷酰胺与适配体AX102联合进行机体的给药,肿瘤细胞的增殖能够得到很大程度的阻滞,使其降低31%。
3.3 表皮生长因子受体(EGFR)
EGFR是一种带酪氨酸激酶的活性膜表面受体物质,常异常表达或高表达于恶性肿瘤中。Pu等[23]筛选出了一种高亲和力的适配体E07,适配体对野生型的EGFR和缺失突变体EGFRVⅢ产生一定的特异性,降低EGFR自磷酸化的进程。Li等[24]将适配体E07构建于化学修饰的玻璃基质,同时检测肿瘤细胞的富集进程,进而对外周血中的肿瘤细胞进行有效的检测,以期实现肿瘤的及早诊断。
3.4 白细胞介素受体
白细胞介素6受体(IL-6R)在各种炎性反应中(与癌症相关的)关系密切。Yu等[25]筛选IL-6R胞外可溶性位点,能够得到特异且适宜的RNA适配体。用荧光进行标记适配体AIR3A,结果显示,适配体AIR3A可以介导细胞吞噬作用的发生,并参与其过程。白细胞介素10受体(IL-10)的RNA适配体RSA1也能很好地阻断IL-10的信号传导,限制肿瘤的生长[26],推测此可能是癌症治疗的新策略。
4 小结
核酸适配体特有的高亲和力、高特异度等优势,使其在肿瘤的诊断中占据至关重要的地位。较抗体而言,核酸适配体较易获得的优势使其在肿瘤领域的研究不断攀升。随着核酸适配体在肿瘤靶向治疗中的广泛应用,基于细胞的SELEX技术俨然已成为该领域的主要方向,可利用组合疗法将siRNA及嵌有化疗药物的核酸适配体共同呈递来提高药物疗效[27-29]。“激活式核酸适配体探针”概念的提出,不仅为核酸适配体在肿瘤活细胞检测研究中的应用提供了一种新颖的手段与思路,而且具有极其重要的科学价值及临床实验的广泛前景。目前大部分的研究还在一个较为基础的阶段,将核酸适配体作为药物用于临床尚待大样本、多中心的实验来验证其有效性及安全性。核酸适配体介导的靶向给药系统也会随着此领域技术的不断加深及完善,在疾病的治疗中发挥至关重要的功用。同时,在医学、药学、分子生物学、纳米科学、物理化学等领域系统地进行联合研究,势必会推动核酸适配体更为广泛的发展,从而为发展肿瘤靶向治疗的新技术提供可靠的参考。
[参考文献]
[1] Maremanda NG,Roy K,Kanwar RK,et al.Quick chip assay using locked nucleic acid modified epithelial cell adhesion molecule and nucleolin aptamers for the capture of circulating tumor cells[J].Biomicrofluidics,2015,9(5):054110.
[2] Qin C,Wen W,Zhang X,et al.Visual detection of thrombin using a strip biosensor through aptamer-cleavage reaction with enzyme catalytic amplification[J].Analyst,2015, 140(22):7710-7717.
[3] Aptekar S,Arora M,Lawrence CL,et al.Selective targeting to glioma with nucleic acid aptamers[J].PLoS One,2015, 10(8):e0134957.
[4] Wan J,Ye L,Yang X,et al.Cell-SELEX based selection and optimization of DNA aptamers for specific recognition of human cholangiocarcinoma QBC-939 cells[J].Analyst,2015,140(17):5992-5997.
[5] Sun H,Zu Y.A highlight of recent advances in aptamer technology and its application[J].Molecules,2015,20(7):11959-11980.
[6] Colucciello M.Current intravitreal pharmacologic therapies for diabetic macular edema[J].Postgrad Med,2015,127(6):640-653.
[7] Wang D,Li Y,Lin Z,et al.Surface-enhanced electrochemiluminescence of Ru@SiO2 for ultrasensitive detection of carcinoembryonic antigen[J].Anal Chem,2015,87(12):5966-5972.
[8] Camorani S,Cerchia L.Oligonucleotide aptamers for glioma targeting:an update[J].Cent Nerv Syst Agents Med Chem,2015,15(2):126-137.
[9] Yu J,Yang L,Liang X,et al.Bare magnetic nanoparticles as fluorescence quenchers for detection of thrombin[J].Analyst,2015,140(12):4114-4120.
[10] Benedetto G,Hamp TJ,Wesselman PJ,et al.Identification of epithelial ovarian tumor-specific aptamers[J].Nucleic Acid Ther,2015,25(3):162-172.
[11] Cappi G,Spiga FM,Moncada Y,et al.Label-free detection of tobramycin in serum by transmission-localized surface plasmon resonance[J].Anal Chem,2015,87(10):5278-5285.
[12] Klufas MA,Chan RV.Intravitreal anti-VEGF therapy as a treatment for retinopathy of prematurity:what we know after 7 years[J].J Pediatr Ophthalmol Strabismus,2015, 52(2):77-84.
[13] Lao YH,Phua KK,Leong KW.Aptamer nanomedicine for cancer therapeutics:barriers and potential for translation[J].ACS Nano,2015,9(3):2235-2254.
[14] Jacobson O,Yan X,Niu G,et al.PET imaging of tenascin-C with a radiolabeled single-stranded DNA aptamer[J].J Nucl Med,2015,56(4):616-621.
[15] Diaz JA,Wrobleski SK,Alvarado CM,et al.P-selectin inhibition therapeutically promotes thrombus resolution and prevents vein wall fibrosis better than enoxaparin and an inhibitor to von Willebrand factor[J].Arterioscler Thromb Vasc Biol,2015,35(4):829-837.
[16] Santoni M,Scarpelli M,Mazzucchelli R,et al.Targeting prostate-specific membrane antigen for personalized therapies in prostate cancer:morphologic and molecular backgrounds and future promises[J].J Biol Regul Homeost Agents,2014,28(4):555-563.
[17] Yeh S,Kim SJ,Ho AC,et al.Therapies for macular edema associated with central retinal vein occlusion:a report by the American Academy of Ophthalmology[J].Ophthalmology,2015,122(4):769-778.
[18] Xiang D,Shigdar S,Qiao G,et al.Nucleic acid aptamer-guided cancer therapeutics and diagnostics:the next generation of cancer medicine[J].Theranostics,2015,5(1):23-42.
[19] Chen TT,Tian X,Liu CL,et al.Fluorescence activation imaging of cytochrome C released from mitochondria using aptameric nanosensor[J].J Am Chem Soc,2015,137(2):982-989.
[20] Liu J,Zhang P,Yang X,et al.Aptamer-mediated indirect quantum dot labeling and fluorescent imaging of target proteins in living cells[J].Nanotechnology,2014,25(50):505502.
[21] Liao J,Liu B,Liu J,et al.Cell-specific aptamers and their conjugation with nanomaterials for targeted drug delivery[J].Expert Opin Drug Deliv,2015,12(3):493-506.
[22] Dam DH,Culver KS,Kandela I,et al.Biodistribution and in vivo toxicity of aptamer-loaded gold nanostars[J].Nan-omedicine,2015,11(3):671-679.
[23] Pu Y,Liu Z,Lu Y,et al.Using DNA aptamer probe for immunostaining of cancer frozen tissues[J].Anal Chem,2015,87(3):1919-1924.
[24] Li H,Mu Y,Qian S,et al.Synthesis of fluorescent dye-doped silica nanoparticles for target-cell-specific delivery and intracellular microRNA imaging[J].Analyst,2015, 140(2):567-573.
[25] Yu J,Zhang L,Xu X,et al.Quantitative detection of potassium ions and adenosine triphosphate via a nanochannel-based electrochemical platform coupled with G-quadruplex aptamers[J].Anal Chem,2014,86(21):10741-10748.
[26] Kaur J,Tikoo K.Ets1 identified as a novel molecular target of RNA aptamer selected against metastatic cells for targeted delivery of nano-formulation[J].Oncogene,2015, 34(41):5216-5228.
[27] Ruff KM,Strobel SA.Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy[J].RNA,2014,20(11):1775-1788.
[28] Gopinath SC,Hayashi K,Kumar PK.Aptamer that binds to the gD protein of herpes simplex virus 1 and efficiently inhibits viral entry[J].J Virol,2012,86(12):6732-6744.
[29] Xiang DX,Shigdar S,Qiao G,et al.Nucleic acid aptamer-guided cancer therapeutics and diagnostics:the next generation of cancer medicine[J].Theranostics,2015,5(1):23-42.
(收稿日期:2016-01-08 本文编辑:王红双)