不定复空间型中具有常数量曲率的完备全实2—调和类空子流形

2016-06-25 06:41陈亚力宋卫东
关键词:曲率调和分类号

陈亚力+宋卫东

摘 要 设CPn+pn2+p(4)是具有常全纯截面曲率4的复n+p维不定复空间形.Mn是CPn+pn2+p(4)中常数量曲率的完备全实2-调和类空子流形,H表示Mn的平均曲率.本文利用活动标架法和广义极大值原理研究了不定复射影空间中具有常数量曲率的2-调和类空子流形,得到Mn关于H的Pinching定理.

关键词 不定复空间;完备;2-调和;类空

中图分类号 O18615 文献标识码 A 文章编号 1000-2537(2016)03-0069-06

Abstract Let CPn+pn2+p(4) be an indefinite complex space form of complex dimension n+p, with constant holomorphic sectional curvature 4. Mn is a complete totally real space-like biharmonic sub-manifold with constant scalar curvature in CPn+pn2+p(4). H is denoted by mean curvature. In this paper, the indefinite complex space form with constant scalar curvature in the complete space-like biharmonic submanifold is discussed by using moving-frame method and generalized maximum principle. Some pinching theorems about H for Mn are obtained.

Key words indefinite complex space form; complete; biharmonic; space-like

参考文献:

[1] CHOI Y S, KWON J H, SUH Y J. On semi-Ryan complex submanifolds in an indefinite complex space form[J]. Rocky Moun J Math, 2001,31(3):873-897.

[2] KENDALL D G. Shape manifolds, procrustean metrics, and complex projective spaces[J]. Bull London Math Soc, 1984,16(2): 81-121.

[3] DONG Y. On indefinite special Lagrangian submanifolds in indefinite complex Euclidean spaces[J]. J Geom Phys, 2009,59(6):710-726.

[4] ERDEM S, GLAZEBROOK J F. Harmonic maps of Riemann surfaces to indefinite complex hyperbolic and projective spaces[J]. Proc London Math Soc, 1983,3(3):547-562.

[5] 孙华飞.不定复空间型中的全实极大类空子流形[J].东北大学学报, 1994,15(5):547-550.

[6] VRANCKEN L. Minimal Lagrangian submanifolds with constant sectional curvature in indefinite complex space forms[J]. Proc Am Math Soc, 2002,130(5):1459-1466.

[7] CHENG Q. Complete space-like submanifolds in a de Sitter space with parallel mean curvature vector[J]. Math Zeit, 1991,206(1):333-339.

[8] YAU S T. Submanifolds with constant mean curvature[J]. Am J Math, 1974,96(2):346-366.

[9] CHEN B, OGIUE K. On totally real submanifolds[J]. Trans Am Math Soc, 1974,193:257-266.

[10] ROMERO A, SUH Y J. Dierential geometry of indefinite complex submanifolds in indefinite complex space forms[J]. Extr Math, 2004,19(3):339-398.

[11] 欧阳崇珍.伪黎曼空间型的2-调和类空子流形[J].数学年刊:A辑, 2000,21(6):649-654.

[12] OMORI H. Isometric immersions of Riemannian manifolds[J]. J Math Soc Jap, 1967,19(2):205-214.

[13] YAU S T. Harmonic functions on complete Riemannian manifolds[J]. Comm Pure Appl Math, 1975,28(2):201-228.

[14] 纪永强.子流形几何[M].北京:科学出版社, 2003.

(编辑 HWJ)

猜你喜欢
曲率调和分类号
调和
欧氏空间中超曲面的L2调和2—形式
不同曲率牛顿环条纹干涉级次的选取
各类曲线弯曲程度的探究
A Study of Chinese College Athletes’ English Learning
一类广义平均曲率Liénard方程周期解存在性与唯一性(英文)
漫画
例谈调和平均数的简单应用
《曲线运动与万有引力》错解求诊