兰德新+陈文斌
References:
[1] NGUYEN P C. Periodic solutions of a second order nonlinear system[J]. J Math Anal Appl, 1997,214(1):219-232.
[2] LU S P, GE W G. Periodic solutions for a kind of Liénard equation with a deviating argument[J]. J Math Anna Appl, 2004,289(2):231-243.
[3] CHENG W S, REN J L. On the existence of periodic solution for P-Laplacian generalized Liénard equation[J]. Nonlinear Anal, 2005,60(1):65-75.
[4] GAO F B, LU S P. New results on the existence and uniqueness of preiodic solutions for Liénard equation type P-Laplacian equation[J]. J Franklin Institute, 2008,345(2):374-381.
[5] GAO H, LIU B W. Existence and uniqueness of periodic solutions for forced Rayleigh-type equations[J]. Appl Math Comput, 2009,211(1):148-154.
[6] BONHEURE D, HABETS P, OBERSNEL F, et al. Classical and non-classical solutions of a prescribed curvature equations[J].J Diff Equ, 2007,243(1):208-237.
[7] LOPEZ R. A comparison result for radial solutions of the mean curvature equation[J]. Appl Math Lett, 2009,22(4):860-864.
[8] PAN H. One-dimensional prescribed mean curvature equation with exponential nonlinearity[J]. Nonlinear Annl, 2009,70(5):999-1010.
[9] GAINES R E, MAWHIN J. Coincidence degree and nonlinear differential equaations[M].Berlin:Springer, 1977.
[10] LU S P, GE W G. Sufficient conditions for the existence of periodic solutions to some second order differential equations with a deviating argument[J].J Math Anal Appl, 2005,308(2):393-419.
(编辑 CXM)