王秋菊,刘 峰,高中超※,姚春雨,张劲松,常本超,高 盼,张春峰,贾会彬,焦 峰,姜 辉
(1.黑龙江省农业科学院土壤肥料与资源环境研究所,哈尔滨150086;2.黑龙江省农业科学院科研处,哈尔滨150086;3.黑龙江省农业科学院佳木斯分院,佳木斯;4.黑龙江八一农垦大学,大庆163319)
心土培肥犁改良瘠薄土壤的效果
王秋菊1,刘 峰2,高中超1※,姚春雨1,张劲松1,常本超1,高 盼1,张春峰3,贾会彬3,焦 峰4,姜 辉2
(1.黑龙江省农业科学院土壤肥料与资源环境研究所,哈尔滨150086;2.黑龙江省农业科学院科研处,哈尔滨150086;3.黑龙江省农业科学院佳木斯分院,佳木斯;4.黑龙江八一农垦大学,大庆163319)
研究根据心土培肥的改土技术要求研制出心土培肥犁,并分别在瘠薄黑土和碳酸盐草甸黑钙土上开展大面积机械改土试验,明确自主研发的心土培肥犁改土后对土壤理化性质影响及对作物产量的效果,为其广泛应用到低产土壤改良提供机械及技术支持。试验设深松、心土培肥和常规对照耕作,采用大田对比方法。研究结果表明:心土培肥和深松在不同类型土壤上对土壤理、化性质,对作物产量及产量性状影响后效不完全一致;心土培肥降低土壤抗剪强度后效明显,碳酸盐草甸黑钙土>10~30 cm土层土壤抗剪强度比对照降低6.65~12.16 kPa,黑土比对照降低8.20~11.31 kPa,碳酸盐草甸黑钙土改土后效果明显,黑土改土后效长,心土培肥改土效果优于深松;土壤容质量和硬度趋势同上;心土培肥提高土壤透气系数为2.78~14.28倍,饱和导水率为2.38~11.62倍;深松和心土培肥可提高下层土水分消耗比例,>30~60 cm土层耗水量为心土培肥区>深松区>对照区,心土培肥耗水量比照高10%;心土培肥处理可提高土壤磷含量和供磷强度,>20~30 cm和>30~40 cm土层土壤供磷强度比对照分别提高4.19~5.17倍和4.96~17倍,碳酸盐草甸黑钙土高于黑土;心土培肥可提高玉米产量,碳酸盐草甸黑钙土上心土培肥增产幅度为6.82%~18.01%,黑土增产幅度为6.45%~11.18%,平均增产效果碳酸盐草甸黑钙土>薄层黑土,但黑土持续增产效果好。
土壤;农业机械;作物;心土培肥犁;碳酸盐草甸黑钙土;薄层黑土;理化性质;效果
王秋菊,刘 峰,高中超,姚春雨,张劲松,常本超,高 盼,张春峰,贾会彬,焦 峰,姜 辉.心土培肥犁改良瘠薄土壤的效果[J].农业工程学报,2016,32(6):27-33.doi:10.11975/j.issn.1002-6819.2016.06.004 http://www.tcsae.org
Wang Qiuju,Liu Feng,Gao Zhongchao,Yao Chunyu,Zhang Jinsong,Chang Benchao,Gao Pan,Zhang Chunfeng,Jia Huibin,Jiao Feng,Jiang Hui.Subsoil fertilization plow and its effect on improving barren soil[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(6):27-33.(in Chinese with English abstract) doi:10.11975/j. issn.1002-6819.2016.06.004 http://www.tcsae.org
耕地质量和数量是确保国家粮食安全的2个最基本要素。为提高耕地质量,2013年国务院提出全国高标准农田建设总体规划[1],并在全国实施。黑龙江省是中国重要商品粮生产基地,粮食总产达到624亿kg[2],为保障国家粮食安全作出重要贡献。但黑龙江省低产土壤面积大,土壤类型多,低产原因各异。比如白浆土主要是黑土层薄和白浆层障碍;坡地瘠薄土壤主要存在养分贫瘠和水土流失问题;半干旱风沙土壤主要是养分瘠薄和土壤风蚀;碳酸盐及其碱化型土壤主要是土壤盐渍化和养分贫瘠。为此,生产实践中相继研究推广了一系列改土培肥技术,为中国中低产田改造和高标准农田建设提供了可靠的技术支撑。其中的心土混层和心土培肥改良白浆土技术[3-4];保护性耕作技术[5]、震动深松[6]、稻壳深施改良碳酸盐碱土技术[7]以及秸秆还田[8-9]等技术就是众多现代改土技术的代表性成果。
关于心土培肥改良低产土壤研究,日本学者南松雄[10]认为心土培肥是同时改良白浆土心土层土壤不良物理性质和化学性质的一种综合改土技术,其改土后效持久,属于半永久型改土技术,对于提高土壤生产潜力具有重要意义;匡恩俊、Gourley等研究明确了心土培肥改良低产白浆土的持续增产效果[11-12]。但是,心土培肥在不同类型土壤上的应用效果尚缺少深入研究,生产上不仅缺乏实用的机械手段,也未构建起完整的心土培肥的应用技术体系。为此按照心土培肥的改土技术要求研制出心土培肥犁,并分别在瘠薄黑土和碳酸盐草甸黑钙土上开展大面积机械改土试验,本文重点研究了该心土培肥犁改良培肥不同土壤的效果,为大面积推广提供科学依据。
1.1 心土培肥犁培肥试验
1.1.1 试验地点
试验分别在安达市碳酸盐草甸黑钙土和依安县典型黑土上进行,土壤基本理化性质如表1,土壤肥力依安试验点明显高于安达试验点。安达试验点设在黑龙江省安达市羊草镇新合村(地理坐标为124°53′-125°55′E,46°01′-47°01′N);依安试验点设在黑龙江省依安县农业科技示范园区(地理坐标为124°50′-125°42′E,47°16′-48°2′N)。2个试验地点种植制度为1年1熟制,试验轮作顺序为玉米—玉米—玉米。
表1 供试土壤基本性质Table 1 Basic properties for tested soil
1.1.2 试验处理
试验采用大田对比试验,设3个处理,每个处理面积2 000 m2(100 m×20 m)。具体处理如下:
1)对照(CK):采用当地惯用的常规耕作法,秋季收获后用北林万达田园机械厂IGSZ-140型灭茬机旋耕灭茬,耕深12 cm,破垄夹肥,待翌春播种;
2)深松:采用山东大华机械1S-270深松机深松30~35 cm后,轻耙2次,夹肥起垄,待翌春播种;
3)心土培肥:采用自主研发的心土培肥犁作业,该犁为上翻下松的作业模式,上翻20~25 cm,下松20 cm,总深耕40~45 cm。作业时向下层土施入钙镁磷肥750 kg/hm2(其中P2O5质量含量>12%、CaO质量含量>25%、MgO质量含量>5%)。
耕种及施肥概况:安达试验点每年施基肥氮、磷、钾用量分别为202、105、105 kg/hm2;依安试验点每年施基肥氮、磷、钾施用量分别为178.5、81、67.5 kg/hm2。试验处理时间为2013年10月12-15日。2014年安达试验点4月25日播种;依安试验点5月5日播种;玉米收获后留茬越冬,2015年春各处理区统一采用IGSZ-140型灭茬机灭茬、破垄、夹肥、机械播种和田间管理等作业。播种方法:安达试验点采用机械开沟—滤水—条播—覆土—镇压模式播种;依安试验点采用机械联合播种机播种。供试品种安达试验点为玖龙14,依安试验点为吉单27。
1.2 心土培肥犁结构及作业原理
心土培肥犁的基本结构如图1中a所示,主要由支架、施肥装置和3个犁铧组构成。每个犁铧组均由1个耕幅45 cm的铧式犁(第1犁)和1个耕幅20 cm的心土犁(第2犁)构成,在第2犁后方分别设置一个排肥口(图1b)。机械总耕作幅宽为135 cm,总耕深35~40 cm,总牵引阻力3.5~4 N。心土培肥作业时,第1犁将0~20 cm表层土壤平移反转,其后面随之而来的第2犁再向下耕作心土,同时上方的肥料箱中的培肥物料通过排肥口排出,分布在20~30 cm土层内,达到培肥心土层的目的。工作原理如图2所示,其中a为作业前的土壤,分为表土层和心土层,土层厚度均为20 cm;b为第1犁作业时将表土层平移反转露出心土层;c为后面的第2犁破碎心土层的同时将培肥物料第2犁后方;d为在耕翻下一幅时,第1犁耕起的表土翻扣在已混合土层上。
图1 机械构造图及部件Fig.1 Mechanical structure drawing and parts
图2 作业原理图Fig.2 Operation principle graph
1.3 调查项目与方法
土壤物理性质调查:于2014年秋季在每个处理的纵向约100 m处,横向中间处各挖1个60 cm×60 cm×60 cm土壤剖面,用100 mL环刀分层取原状土样测定土壤物理性质,同时取分散样测定土壤化学性质。取样层次:0~10、>10~20、>20~30、>30~40 cm土层。3次重复,环刀样扣盖,密封后备用。
土壤容质量采用环刀法测定法[13],土壤抗剪强度采用型号为GEONOR72572土壤剪切仪测定;不同土层土壤容积含水量监测采用美国SEC公司生产的MiniTrase2.07高精度土壤水分测量系统监测,气象数据由试验区气象站监测提供。土壤耗水量监测的土壤容积含水量变化计算获得,公式如下:
式中DW耗为某作物生育期中,单位时期内某段土层内的作物耗水量,mm;DW始为开始测定时该土层内的土壤水分储量,也称为初始储水量,mm;DW终为测定结束时该土层内的土壤水分储量,也称为最终储水量,mm;t为时间,日;θν为体积含水量,%;h为土层厚度,cm。
土壤硬度采用DIK-5521土壤硬度计(圆锥角度30°,底面积2 cm2)测定[13],测定时沿着垄向垂直方向每隔10 cm测1次,共测定10个位点,取平均值绘成曲线;土壤通气系数采用DIK-5001土壤透气性测定仪测定;饱和导水率采用DIK-4012土壤透水性测定仪测定;玉米产量调查:每区取3点,每点10 m2,室内考种调查产量及产量性状。
表2 不同耕作处理土壤物理性质Table 2 Soil physical properties of different tillage treatments
1.4 数据处理
数据处理软件为EXCEL和DPS(data processing system)。
2.1 对土壤物理性质的影响
表2是改土后第1年(2014)和第2年(2015)土壤物理性质调查结果。从表2、图3中看出,土壤抗剪强度、容质量、通气性、饱和导水率,0~10 cm表层土壤受耕作影响处理间变化无规律,>10~30 cm土层呈规律性变化:改土后第1年,碳酸盐草甸黑钙土深松和心土培肥>10~30 cm土壤抗剪强度平均比对照降低7.14、12.16 kPa;容质量降低0.06、0.13 g/cm3;第2年平均抗剪强度仍分别比对照低0.68和6.65 kPa;容重低0.05和0.08 g/cm3,表明深松抗剪强度基本恢复原;但从土壤硬度看(图4),改土后第2年仍然低于对照。黑土深松和心土培肥区土壤抗剪强度、容质量和硬度变化趋势与碳酸盐草甸土一致。土壤透气性、饱和导水率深松处理在碳酸盐草甸黑钙土和黑土变化不规律,心土培肥处理在2种土壤上均提高了>10~30 cm土层土壤透气系数和饱和导水率,心土培肥改良碳酸盐草甸黑钙土和黑土通气透水性效果,改土第1年>10~30 cm土层平均比对照提高2.22和14.28倍,第2年提高4.17和2.78倍;饱和导水率第一年分别比对照提高7.93和6.86倍;第2年提高11.62和2.38倍,深松效果不明显。
图3 不同年份碳酸盐草甸黑钙土硬度Fig.3 Hardness of carbonate meadow chernozem of different years
2.2 对土壤储水性的影响
图5是安达试验点碳酸盐草甸黑钙土和依安试验点黑土试验点不同处理土壤耗水量计算结果。安达试验点初始时间、终止时间分别为2014年8月3日至8月10日。依安试验点为2014年8月3日至8月13日,测定时间内无大气降水补给,土壤水分消耗为作物腾发+土壤蒸发。图5a是依安试验点不同土层耗水量,图5b为上下土层耗水百分比。从图5a看出,越下层土耗水量越少;比较不同处理看出,地表下30 cm以内土层耗水量,依次为对照区>深松区>心土培肥区,30 cm以下土层耗水量,依次为心土培肥区>深松区>对照区;深松和心土培肥区消耗下层土水分比例明显高于对照(图5b),说明深耕不仅仅有利于深层储水,也有利于利用作物有效利用深层土壤的水分。安达调查结果也有相同趋势(图5c、d)。
图4 不同年份薄层黑土硬度Fig.4 Hardness of thin layer black soil of different years
图5 不同类型土壤耗水量及耗水量比例Fig.5 Water consumption and rate of different type soil
2.3 对土壤化学性质影响
考虑到心土培肥处理向心土内施入过磷酸钙(其中P2O5质量含量为12%),表3主要列出不同土层土壤磷测定结果。从表3看出,土壤磷素水平黑土明显高于碳酸盐草甸黑钙土;0~20cm耕层内土壤,上下土层之间、处理之间差异不明显,也无明确规律性。碳酸盐草甸黑钙土>20~30cm心土层土壤全磷和有效磷含量,心土培肥分别比对照提高0.05 g/kg和3.21 mg/kg,>30~40 cm土层提高0.01 g/kg和 1.92 mg/kg,2层土壤供磷强度比对照分别提高5.17倍和17倍;深松与对照相比有效磷含量平均提高1.31 mg/kg,供磷强度提高1.39倍,没有心土培肥处理效果明显。黑土在>20~30 cm土层,心土培肥处理土壤全磷和有效磷含量分别比对照提高0.09g/kg和15.05 mg/kg,>30~40cm土层土壤分别提高0.03 g/kg和9.2mg/kg,土壤供磷强度比对照分别提高4.19倍和4.96倍,深松处理对心土层土壤磷含量无明显影响。说明磷的供应强度在缺磷土壤上更明显。
表3 不同耕作处理土壤磷变化Table 3 Soil phosphorus change of different tillage treatments
2.4 对作物产量影响
从表4中看出,在碳酸盐草甸黑钙土上,心土培肥处理和深松处理均可提高玉米的株高、穗长和穗粗,增加玉米穗粒数和百粒质量,提高玉米产量。改土后第一年心土培肥和深松分别比对照增产18.01%和14.28%,第2年分别增产6.82%和2.87%,心土培肥效果好于深松;在碳酸盐草甸黑钙土上效果好于黑土,在黑土上分别比对照增产6.45%和1.80%,改土第2年增产11.18%和5.11%。平均增产效果碳酸盐草甸黑钙土>黑土。这与土壤肥力基础有一定关系。
表4 玉米产量性状及产量Table 4 Yield and yield properties of corn
耕作的主要作用是改变土壤物理性质,而深耕则改善下层土物理性质的效果明显。本研究结果表明,深松和心土培肥与生产惯用的灭茬旋耕技术比,改善土壤理化性质、提高作物产量效果的效果十分明显。但是尚有几个问题需要说明:一是试验结果表明,不论在碳酸盐草甸黑钙土或黑土上,耕层0~10 cm土层不同处理之间的土壤抗剪强度、质量等物理性质变化无规律性,表明传统的旋耕灭茬技术的耕作深度不超过10 cm,尽管中耕作业在垄沟处耕深超过20 cm,而实际采样中在垄台上取样避开了松软的垄沟,这是调查数据与实际情况不一致的重要原因。二是有研究认为土壤剪切力、容质量、和硬度均是从不同角度上来衡量土壤的物理质量标准,剪切力是抵抗机械切割土壤的阻力的强度、与土壤容质量、硬度一起表征土壤物理环境及状态的重要指标[14-16]。但从表1看出,作为表征和评价土壤物理性质变化的重要指标,土壤抗剪强度、饱和导水率和土壤硬度尤为重要。特别是在用土壤容质量衡量农业机械压实土壤状况时,由于一般耕作措施导致土壤容质量变化空间很小,且通气性存在不稳定因素,在实际操作中很难把握。三是深松和心土培肥深层土壤耗水量占有比例高于常规耕作,说明心土培肥和深松处理深层土壤蓄水、保墒、供水能力强,抗旱、防涝能力强。
四是心土培肥和深松在碳酸盐草甸黑钙土分别平均增产12.4%和8.5%,黑土增产8.9%和3.5%,碳酸盐草甸黑钙土好于黑土,心土培肥好于深松,其差异可能是土壤基础肥力差异造成的。但第2年增产效果,前者不如后者,可能是由于前者土壤沙粒含量高,有机质低,耕松后土壤易复原[17],因此改土第2年后效果不如黑土保持时间长,但改土第1年效果明显。
五是心土培肥增加了深层土壤全磷和有效磷含量,提高了土壤供磷强度,在碳酸盐草甸黑钙土上效果好于黑土。碳酸盐草甸黑钙土土壤pH值高,对作物危害大,深耕促进土壤水分流动,有效降低土壤pH值[18],土壤有效养分活性得到提高[19]。
另外,试验区土壤肥力、土层厚度比较均匀一致,因此,在测定剖面土壤物理性质时各处理只挖了一个剖面,这对土壤物理性质、尤其是耕层土壤物理性质准确性可能有一定影响,但是从土壤数值看出,耕层土壤各处理间各项指标差异较小,而且变化不规律,主要是由于正常机械田间作业和采样误差导致,而下层土各处理间土壤各项物理指标变化较为规律,深层土壤受机械扰动少,各处理间差异主要是来源于深耕作业处理。
心土培肥和深松在不同类型土壤上对土壤理、化性质,对作物产量及产量性状影响不一致。
1)心土培肥在改善土壤物理性质抗剪强度、容质量、硬度、通气性和透水性方面效果好于深松,改土效果在碳酸盐草甸黑钙土效果明显于在黑土上的效果,但在黑土上改土后持续效果长,>10~30 cm土层土壤各项指标与对照相比变化幅度明显。
2)心土培肥和深松可提高深层土壤蓄水、耗水能力,两类土壤上0~30 cm土层土壤耗水量对照区>深松区>心土培肥区;30~60 cm土层耗水量为心土培肥区>深松区>对照区,心土培肥深层土壤耗水量可达总耗水量的30%。
3)在对土壤养分影响上,心土培肥可提高土壤磷含量和供磷强度,碳酸盐草甸黑钙土土壤供磷强度比对照分别提高5.17~17倍,黑土土壤供磷强度比对照提高4.19~4.96倍,碳酸盐草甸黑钙土上土壤供磷强度提高幅度高于黑土土壤供磷强度。
4)在对玉米产量及产量性状影响上,心土培肥和深松均可增加穗长、穗粗、穗粒数和百粒重,进而提高玉米产量,碳酸盐草甸黑钙土上心土培肥增产幅度为6.82%~18.01%,黑土增产幅度为6.45%~11.18%,平均增产效果碳酸盐草甸黑钙土>薄层黑土,但黑土增产后效长。
[1] 薛剑.高标准农田标准与建设路径研究—以黑龙江省富锦市为例[D].北京:中国农业大学,2014. Xue Jian.Study on the Criteria and Construction Approach for Well-facilitated Farmland:A Case Study in Fujin City, Heilongjiang Province[D].Beijing:China Agricultural University, 2014.(in Chinese with English abstract)
[2]中共黑龙江省委政策研究室.黑龙江省情概况[M].哈尔滨:东北农业大学出版社,2015. Policy Research Office of the CPC Heilongjiang Provincial Committee.Heilongjiang Situation[M].Haerbin:Northeast Agricultural University Press,2015.(in Chinese with English abstract)
[3] 刘峰,高盼,王秋菊,等.心土层改良研究进展[J].中国土壤与肥料,2015,1:7-10. Liu Feng,Gao Pan,Wang Qiuju,et al.Research progress in improvement of subsoil[J].Soil and Fertilizer Sciences in China, 2015,1:7-10.(in Chinese with English abstract)
[4]Huibin Jia,Zhonghe Yu,Chunfeng Zhang,et al.Three-stage subsoil interval mixing plough for improvement of planosol:Part 1:draught and moment[J].Engineering in Agriculture, Environment and Food,2013,6(4):184-190.
[5]薛建福,赵鑫,Shadrack Batsile Dikgwatlhe,等.保护性耕作对农田碳、氮效应的影响研究进展[J].生态学报,2013,33(19):6007-6010. Xue Jianfu,Zhao Xin,Shadrack Batsile Dikgwatlhe,et al. Advances in effects of conservation tillage on soil organic carbon and nitrogen[J].Acta Ecologica Sinica,2013,33(19):6007-6010.(in Chinese with English abstract)
[6] 张广英.固定道式震动深松分层施肥免耕播种技术推广应用[J].时代农机,2015,42(7):6-7. Zhang Guangying.A study on promotion and application of controlled traffic,vibrating,subsoiling & sperated layers fertilization and no-till sowing technology[J].Magazine Official Website,2015,42(7):6-7.(in Chinese with English abstract)
[7]高中超,中本和夫,王秋菊,等.稻壳深施对碱土物理性质和苜蓿产量的影响[J].土壤通报,2015,45(4):990-994. Gao Zhongchao,Nakamoto Kazuo,Wang Qiuju,et al.Effects of deep application of rice husk on physical properties and alfalfa yield in alkali soil[J].Chinese Journal of Soil Science,2015,45 (4):990-994.(in Chinese with English abstract)
[8]Liang Zheng,Wenliang Wu,Yongping Wei,et al.Effects of straw return and regional factors on spatio-temporal variability of soil organic matter in a high-yielding area of northern China[J]. Soil and Tillage Research,2015,145:78-86.
[9]Yanfang Gu,Tong Zhang,Hui Che,et al.Influence of returning corn straw to soil on soil nematode communities in winter wheat [J].Acta Ecologica Sinica,2015,35(2):52-56.
[10]南松雄.新时代のつちづくりと土施肥技术[M].札幌:农业技术普及协会,1985:9-37.
[11]匡恩俊,刘峰.心土培肥改良白浆土的研究Ⅰ白浆土心土培肥的效果[J].土壤通报,2008,39(5):1106-1109. Kuang Enjun,Liu Feng.Study on subsoil amendment of baijiang soil[J].Chinese Journal of Soil Science,2008,39(5):1106-1109.(in Chinese with English abstract)
[12]Gourley C J P,Sale P W G.Chemical and physical amelioration of subsoils has limited production benefits for perennial pastures in two contrasting soils[J].Soil and Tillage Research,December 2014,144:41-52.
[13]翁德衡.土壤物理性测定法[M].重庆:科学技术文献出版社重庆分社,1979. Weng Deheng.Soil physical property determination method[M]. Chongqing:Chongqing Branch of Science and Technology Literature Press,1979.(in Chinese with English abstract)
[14]Hossain M F,Chen W,Zhang Y.Bulk density of mineral and organicsoilsin the Canada’sarcticand sub-arctic[J]. Information Processing in Agriculture,2015,2(3-4):183-190.
[15]Mosleh M,Gharahbagh E A,Rostami J.Effects of relative hardness and moisture on tool wear in soil excavation operations [J].Wear,2013,302(1-2):1555-1559.
[16]甘磊,彭新华,谢永雄.放牧对内蒙古大针茅草原土壤剪切力空间分布的影响[J].草业科学,2014,31(2):219-223. Gan Lei,Peng Xinhua,Xie Yongxiong.Effects of grazing on spatial distribution of shear strength in inner mongolia grassland [J].Pratacultural Science,2014,31(2):219-223.(in Chinese with English abstract)
[17]黑龙江省土地管理局,黑龙江省土壤普查办公室编.黑龙江土壤[M].北京:农业出版社,1992. Department of Land and Resources of Heilongjiang Province, Office of soil survey in heilongjiang province.Heilongjiang Soil [M].Beijing:Agriculture Press,1992.(in Chinese with English abstract)
[18]王秋菊,刘峰,高中超,等.有机物料深耕还田改善石灰性黑钙土物理性状[J].农业工程学报,2015,31(10):161-165. Wang Qiuju,Liu Feng,Gao Zhongchao,et al.Deep tillage with organic materials returning to field improving soil physical characters of calcic chernozem[J].Transactions of the Chinese Society of Agricultural Engineering(Trans.Chin.Soc.Agric.Eng), 2015,31(10):161-165.(in Chinese with English abstract)
[19]王秋菊,高中超,焦峰,等.有机物料深耕还田改善石灰性黑钙土化学性质提高玉米产量[J].农业工程学报,2015,31 (14):110-115. Wang Qiuju,Gao Zhongchao,Jiao Feng,et al.Organic materials returning to field and deep tillage improving chemical properties of calcic chernozem and increasing crop yield[J].Transactions of the Chinese Society of Agricultural Engineering(Trans.Chin.Soc. Agric.Eng),2015,31(14):110-115.(in Chinese with English abstract)
Subsoil fertilization plow and its effect on improving barren soil
Wang Qiuju1,Liu Feng2,Gao Zhongchao1※,Yao Chunyu1,Zhang Jinsong1,Chang Benchao1,Gao Pan1, Zhang Chunfeng3,Jia Huibin3,Jiao Feng4,Jiang Hui2
(1.Institute of Soil Fertilizer and Environment Resources,Heilongjiang Academy of Agricultural Sciences,Harbin 150086,China;2.Heilongjiang AcademyofAgriculturalSciences,ScientificResearchDepartment,Harbin150086,China;3.JiamusiBranchofHeilongjiangAcademyof AgriculturalSciences,ScientificResearchDepartment,Jiamusi154007,China;4.HeilongjiangBayiAgriculturalUniversity,Daqing,163319,China)
There is a large area of low productive soil,many soil types,and different low productive reasons in Heilongjiang Province.So improving low productive soil has important significance for agriculture.Subsoil fertilization is a comprehensive soil improvement technology which can improve subsoil′s bad physical and chemical properties.Studying team has done research on improving planosol with subsoil fertilization,and this technology has the effect of continually increasing yield,but there is lack of the research on other soil types,and the practical mechanical tools.In this paper,the subsoil fertilization plow was researched according to the subsoil fertilization technology requirements,and applied on the improvement of carbonate meadow chernozem and thin layer black soil,which was aimed to clarify its soil improvement effect on soil physical and chemical properties and corn yield,and provide the mechanical and technological support for its wide application in low production soil.The field contrast method was applied in this study,and 3 treatments were set which included deep loosing(DL),subsoil fertilization(SF)and control(CK).The result showed that the effects of subsoil fertilization and deep loosing on soil physical and chemical properties,yield characteristics and yield were not consistent. The lasting effect of deep loosing and subsoil fertilization on deceasing soil shear strength was obvious.For carbonate meadow chernozem and thin layer black soil,the soil shear strength was decreased by 7.14 and 5.41 kPa under DL treatment,and by 12.16 and 8.20 kPa under SF treatment respectively compared with that of the CK in the first year after soil improvement;the soil shear strength was decreased by 0.68 and 2.25 kPa under DL treatment,and by 6.65 and 11.31 kPa under SF treatment respectively compared with that of the CK in the second year after soil improvement.The bulk density and hardness were the same as the above change.Subsoil fertilization could improve soil air permeability and saturated hydraulic conductivity;the air permeability coefficient was respectively 3.22 and 15.28 times higher than the CK on the 10-30 cm soil layer of carbonate meadow chernozem and thin layer black soil in the first year after improvement,and 5.17 and 3.78 times after the second year;the saturated hydraulic conductivity was respectively 8.93 and 7.68 times higher than that of the CK after the first year,and respectively 12.62 and 3.38 times after the second year.The effect of deep loosing was not obvious.The DL and SF treatment could improve water consumption of subsoil,and the order of water consumption was CK>DL>SF in 0-30 cm soil layer,and SF>DL>CK in 30-60 cm soil layer.The water consumption in subsoil layer was 30%of total water consumption,and 10%more than the CK.The total phosphorus and available phosphorus were increased by 0.05 g/kg and 3.21 mg/kg under SF treatment compared with the CK in 20-30 cm soil layer of carbonate meadow chernozem,and by 0.01 g/kg and 1.92 mg/kg in 30-40 cm soil layer,and the phosphorus offering intensity of the 2 layers was improved by 5.17 and 17 times compared with the CK;The total phosphorus and available phosphorus were increased by 0.09 g/kg and 15.05 mg/kg under SF treatment compared with the CK in 20-30 cm soil layer of thin layer black soil,and by 4.19 g/kg and 4.96 mg/kg in 30-40 cm soil layer,and the phosphorus offering intensity of the 2 layers was improved by 5.17 and 17 times compared with the CK.Subsoil fertilization and deep loosing could promote the corn growth,increase the length and width of ear,grain number per spike,100-seed weight and yield.The yield was increased respectively by 18.01%and 14.28%under subsoil fertilization and deep loosing in the first year after soil improvement for carbonate meadow chernozem,and respectively by 6.82%and 2.87%in the second year after soil improvement;the increased yield was respectively 6.45%and 1.80%in the first year after soil improvement for thin layer black soil,and respectively 11.18%and 5.11%in the second year.The effect of increasing yield for carbonate meadow chernozem is more obvious than that for thin layer black soil.
soils;agricultural machinery;crops;subsoil fertilization plow;carbonate meadow chernozem;thin layer black soil;physical and chemical properties;effect
10.11975/j.issn.1002-6819.2016.06.004
S223
A
1002-6819(2016)-06-0027-07
2015-12-14
2016-01-21
公益性行业(农业)科研专项(201303126-7),科技支撑(2013BAD07B01),省招标项目(2014BAD11B01-A027)
王秋菊(1978-),女,黑龙江省依兰人,博士,副研究员,从事土壤改良研究。哈尔滨 黑龙江省农业科学院土壤肥料与资源环境研究所,150086。Email:bqjwang@126.com
※通信作者:高中超,男,黑龙江绥棱人,副研究员,研究方向为土壤改良。哈尔滨 黑龙江省农业科学院土壤肥料与资源环境研究所,150086。Email:gaozhongchao0713@163.com