蔺 洁
(温州大学化学与材料工程学院,浙江 温州 325000)
燃料电池阴极氧还原电极材料研究进展
蔺 洁
(温州大学化学与材料工程学院,浙江 温州 325000)
目前燃料电池阴极氧还原电极材料主要以铂基贵金属电催化剂为主,然而铂的储量极其有限,成本昂贵,并且铂基电催化剂的稳定性较差,这些因素严重制约了其在商业中的广泛应用,因此研究制备成本低、具有高稳定性的非贵金属碳基催化剂是燃料电池电催化剂的研究重点。本文简单概述了燃料电池阴极氧还原电极材料的研究进展。
燃料电池;氧还原;电极材料
发展清洁、安全、充足的绿色能源是未来能源的发展方向。随着全球经济的高速发展,传统的不可再生能源,如石油、煤、天然气等储量有限,终有一天会消耗殆尽,且它们的利用率很低,会造成严重的环境污染,对人类的生存造成严重威胁,不符合现代社会所提倡的可持续发展战略。因此,寻求高效、充足、可再生的环境友好型新能源迫在眉睫。
燃料电池是一种能够通过氧化还原反应将氧化剂和燃料中的化学能直接转化为电能的能量转换装置。与传统的电池相比,燃料电池不受“卡诺循环”的限制,能量转换率比较高[1],能够达到60%~80%,其实际利用率是普通内燃机的2~3倍,是一种环境友好的能量转换装置,因其原料来源广泛、安全可靠、噪声低等优点,近年来备受国内外研究者的亲睐。
电极材料是决定燃料电池氧还原性能好坏的关键因素之一。目前燃料电池阴极氧还原电极材料主要以铂基贵金属电催化剂为主,然而铂的储量极其有限,成本昂贵,并且铂基电催化剂的稳定性较差,这些因素严重制约了其在商业中的广泛应用,因此研究制备成本低、具有高稳定性的非贵金属碳基催化剂是燃料电池电催化剂的研究重点。
目前应用于燃料电池阴极氧还原的催化剂主要有Pt基催化剂、非金属掺杂碳基催化剂和非贵金属掺杂碳基催化剂。
1.1 Pt基催化剂
目前,应用最多的阴极ORR催化剂主要是Pt基催化剂[2-4],Pt基催化剂的催化活性高,是最早用于燃料电池阴极氧还原的催化剂。被广泛应用的Pt基催化剂主要是Pt/C和Pt-M/C合金催化剂两种。Pt/C催化剂目前的应用比较广泛,但由于其价格昂贵,资源有限,并且非常容易CO中毒而失去活性,限制了其在商业燃料电池中的广泛应用。Pt-M/ C合金催化剂(M=Fe,Zn,Co等)是在Pt/C的基础上掺杂一些过渡金属,形成二元或多元合金,从而获得更高效催化活性的氧还原催化剂。Mukerjee等[5]通过研究发现,Pt/Cr、Pt/Co和Pt/Ni都有比Pt/C更好的氧还原催化活性。Myong-ki等[6]研究表明,在比表面积相同时,Pt合金催化剂比纯的Pt催化剂拥有更高的催化活性,这是由于Pt合金催化剂中相邻的Pt-Pt之间的距离减小,使得其氧吸附能力增强。Pt基催化剂虽然有着优异的催化性能,但是它对燃料中的杂质敏感,易被氨气、一氧化碳和硫化氢等毒化,且抗透过性能差,比如甲醇的透过会明显降低其阴极氧还原催化活性,然而最重要的是,它的成本太高,从而限制了其在商业中的广泛应用。
1.2 非金属掺杂碳基催化剂
从理论上来说,不含金属的催化剂应该更能够增强其耐酸碱的腐蚀性,且其成本低廉,不会由于燃料中的CH3OH或CO而中毒。理论计算和实验结果均表明,一些无金属掺杂碳基催化剂由于其特殊的电子特性和二维纳米结构而具有良好的催化活性[7-9]。近年来研究比较多的杂原子掺杂碳材料主要有氮掺杂、硫掺杂、磷掺杂以及硼掺杂等电催化剂材料。通常用到的碳材料有石墨烯[10-11]、Vulcan XC-72[12]、碳球[13]、碳纤维[14]、炭气凝胶[15]、富勒烯[16]和碳纳米笼状颗粒[17],这些碳材料可以作为氮掺杂的载体,来制备氧还原电催化剂。目前,制备这类催化剂的方法主要有高温裂解法[18]、化学气相沉积(CVD)法[19-20]等。碳材料中的氮主要有4种存在形式:吡啶型N(Pyridinic N)、石墨型N(Graphitic N)、吡咯型N(Pyrrolic N)及氧化型N(N-Oxide)。其中吡啶型氮和吡咯型氮主要存在于材料的边缘及缺陷处,石墨化氮在石墨结构内取代碳原子,一部分存在于材料的边缘,而另一部分存在石墨化架构的体相中,吡啶型氮也能以氧化形式存在[21-22]。Zelenay[23]课题组研究的Co-聚吡咯-碳结构说明了N-金属活性与稳定性并存。合成过程中,硝酸钴被聚吡咯的阵列包围,然后通过Vulcan XC-72载体被硼氢化钠还原,这样制备得到的氧还原催化剂具有很好的活性和稳定性。其氢-氧燃料电池的功率密度约为150mW·cm-2,放电时间能够持续100h而没有损失。但与Pt/C相比,该氧还原催化剂的还原电位仍然很高。
近年来,有研究指出,可利用两种及以上非金属元素对碳材料进行双掺杂,形成独特的电荷网络结构,改变氧气分子和催化剂之间的吸附方式,从而提高其氧还原催化活性。Dai等[24]通过高温热解法制备了硼/氮双掺杂的VA-BCN,实验结果表明,在碱性电解液中,该催化剂具有良好的氧还原催化活性。最近,硼/氮掺杂已经被应用到碳纳米管和石墨烯的掺杂中,如Sun等[25]利用尿素、硼酸和聚乙二醇为前驱体制备B/N掺杂石墨烯(BNG),通过改变前驱体的质量比和合成温度,作者得到了一系列的B/ N掺杂石墨烯(BNG)催化剂。这些催化剂的电化学性能显示,高的氧还原催化活性不仅依赖于B-N键,而且依赖于高含量的C-B和C-N键,并且使其拥有高的电化学稳定性和抗甲醇中毒性。Chen等[26]报道,利用热溶剂法一步设计合成硫掺杂石墨烯,催化剂是利用还原剂Na2S和硫磺同时还原氧化石墨烯得到的。该催化剂表现出优越的氧还原催化活性和稳定性。戴立明等[27]通过化学气相沉积法,以吡啶、三苯基磷为前驱体,二茂铁为催化剂,制备P/N双掺杂的垂直排列碳纳米管(PN-ACNT),这些P/N双掺杂的碳纳米管表现出极佳的氧还原催化活性以及很好的抗甲醇和一氧化碳中毒能力,由于其协同效应表现出完全的四电子转移过程。
1.3 非贵金属掺杂碳基催化剂
近年来,非贵金属掺杂氧还原催化剂的发展已经广泛推动了多种能量转换装置的商业化。其中,最有发展前途的非贵金属掺杂氧还原催化剂是过渡金属氮掺杂碳材料(M-N-C,M= Co,Fe,Mn,Ni等)。由于其前驱体资源广泛,成本低廉,以及卓越的氧还原催化活性,因此受到国内外学术界的广泛关注。最早由Jasinski等[28]发现金属酞菁具有金属-N4,能够在酸性介质中催化氧还原反应。最近,在固定过渡金属-N4大环化合物以及提高其催化活性的研究中取得了突破性进展。M-N-C催化剂由于其原子结构的复杂性,使得其催化活性位点及催化机制还不是很清楚。Fe、Mn、Ni、Co、Cr、Cu等过渡金属元素作为M-N-C材料中的中心原子已经被人们大量研究过,研究结果初步表明,以Fe和Co为中心原子的M-N-C型催化剂表现出最好的氧还原催化活性[29-31]。Dodelet等[32]通过在Ar和NH3氛围中热解醋酸铁和碳载体合成了Fe-N-C催化剂,并且显示了较高的氧还原催化活性。Bashyam等[33]将钴原子掺入到聚吡咯中,得到的Co-N-C催化剂表现出很好的氧还原催化活性,从而证实了将过渡金属掺入到导电聚合物可以有效提高其氧还原催化活性。Wang等[34]研究了不同金属含量对催化剂氧还原催化活性的影响,研究结果表明,过渡金属的含量对催化剂催化活性的高低具有明显影响。同时,随着过渡金属含量的增加,催化剂的ORR催化活性明显提高,但当金属含量增加到某一个值时,催化剂的ORR催化活性随着金属含量的增加反而会降低,这也证明了催化剂中的金属含量有一个最佳的比例。Lefevre等[35]使用醋酸铁为金属前驱体时,当金属含量为0.2wt%时,其ORR催化活性最高。当铁含量超过最佳值后,生成的Fe颗粒会导致其催化活性降低。Liu等[36]使用聚苯胺热解作为载体,制备Fe-CNx催化剂,实验结果表明,金属Fe的含量为1.2wt%时,催化剂的ORR催化活性最高,增加或减少铁含量都会降低其ORR催化活性。可以看出,不同体系下,金属的最佳含量差别很大。很多研究者已经通过实验证实,对材料进行温度处理可以明显提高其ORR催化活性和催化稳定性[37]。Lalande等[38]研究了温度处理对CoPcTc/C(碳载钴酞菁)性能的影响,结果表明,CoPcTc/C经过500~700℃处理仍能保持原来的结构,催化剂具有最好的催化活性,但催化剂的稳定性很差,活性下降明显,经过900℃处理的CoPcTc/C具有最稳定的ORR催化性能。然而900℃处理已经将材料中的Co-N结构破坏,钴以金属钴和氧化钴的形式存在。Niwa等[42]制备了FePc催化剂,其研究结果指出,当热处理温度低于500℃时,催化剂基本上没有催化活性,当处理温度高于500℃,其催化活性明显升高,温度升高到600℃时,其ORR催化活性最高,继续升高温度,催化剂的氧还原催化活性降低。研究者认为,热处理过程中,材料的碳化使其导电性提高,从而提高了催化剂的催化活性。
燃料电池阴极氧还原电极材料的种类很多,本文简单介绍了几类比较常见的氧还原电催化剂,为研究制备低成本、具有高活性和稳定性的非贵金属碳基催化剂提供理论基础,使其能够尽快实现在商业化生产中的广泛应用。
[1] Markovic N. M., Schmidt T. J., Stamenkovic V., et al. Oxygen reduction reaction on Pt and Pt bimet all icsurfaces: A selective review[J]. Fuel Cells, 2001(2): 105-116.
[2] Jeon M. K., Zhang Y. A., McGinn P. J. A comparative study of PtCo, PtCr, and PtCoCr catalysts for oxygen electroreduction reaction[J]. Electrochim Acta., 2010(55): 5318-5325.
[3] Koh S., Toney M. F., Strasser P., Activity-stability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR)[J]. Electrochim Acta., 2007(52): 2765-2774.
[4] Srivastava R., Mani P., Hahn N., et al. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparticles[J]. Angew. Chem. Int. Ed.,2007(46): 8988-8991.
[5] Jalan V. M. Noble Metal panadium Alloy Catalyst and Method for Making: US: 4, 202, 934[P].
[6] Myoung K. M., Jihoon C., Kyuwoong C., et al. Particle size and alloying effects of Pt-based alloy catalysts for fuel cell application[J]. Electrochimica Acta., 2000(45): 4211-4217.
[7] Gong K., Du F., Xia Z., et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J].Science, 2009, 323(5915): 760-764.
[8] Silva R., Voiry D., Chhowalla M., et al. Efficient Metal-Free Electrocatalysts for Oxygen Reduction: Polyaniline-Derived N- and O-Doped Mesoporous Carbons[J]. Journal of the American Chemical Society, 2013, 135(21):7823-7826.
[9] Yang W., Fellinger T., Antonietti M. Efficient Metal-Free Oxygen Reduction in Alkaline Medium on High-Surface-Area Mesoporous Nitrogen-Doped Carbons Made from Ionic Liquids and Nucleobases[J]. Journal of the American Chemical Society, 2011, 33(2): 206-209.
[10] Geng D., Chen Y., Chen Y., et al. High oxygen-reduction activity and durability of nitrogen-doped graphene[J]. Energy Enviro Sci, 2011(4): 760-764.
[11] Luo Z., Lim S., Tian Z., et al. Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property[J]. J Mater Chem., 2011(21): 8038-8044.
[12] Chisaka M., Iijima T., Tomita A., et al. Oxygen Reduction Reaction Activity of Vulcan XC-72 Doped with Nitrogen under NH3Gas in Acid Media[J]. J. Electrochem Soc.,2010(157): B1701-B1706.
[13] Zhou X., Yang Z., Nie H., et al. Catalyst-free growth of large scale nitrogen-doped carbon spheres as efficient electrocatalysts for oxygen reduction in alkaline medium[J]. J. Power Sources, 2011(196): 9970-9974.
[14] Chen T., Cai Z., Yang Z., et al. Nitrogen-Doped Carbon Nanotube Composite Fiber with a Core-Sheath Structure for Novel Electrodes[J]. Adv Mater., 2011(23): 4620-4625.
[15] Jin H., Zhang H., Zhong H., et al. Nitrogen-doped carbon xerogel: A novel carbon-based electrocatalyst for oxygen reduction reaction in proton exchange membrane(PEM)fuel cells[J]. Energy Environ Sci., 2011(4): 3389-3394.
[16] Gao F., Zhao G. L., Yang S, et al. Nitrogen-Doped Fullerene as a Potential Catalyst for Hydrogen Fuel Cells[J]. J Am Chem Soc., 2012(135): 3315-3318.
[17] Chen S., Bi J., Zhao Y., et al. Nitrogen-Doped Carbon Nanocages as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction[J]. Adv. Mater., 2012(24): 5593-5597.
[18] Li Yunyong, Li Zesheng, Shen Peikang. Simultaneous Formation of Ultrahigh Surface Area and Three-Dimensional Hierarchical Porous Graphene-Like Networks for Fast and Highly Stable Supercapacitors[J]. Adv. Mater.,2013(25): 2474-2480.
[19] Wang B. Recent Development of Non-platium Catalystsfor Oxygen Reduction Reaction[J]. J. Power Sources,2005(152): 1-15.
[20] Stephen M., Keith J. S. Influence of Nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes[J]. J. Pys. Chem. B, 2005, 109 (10): 4707-4716.
[21] Jin Z., Yao J., Kittrell C., et al. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets[J]. ACS Nano, 2011(5): 4112-4117.
[22] Sharifi T., Hu G., Jia X., et al. Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes[J]. ACS Nano., 2012, 6(10): 8904-8912.
[23] Bashyam R., Zelenay P. A Class of Non-Precious Metal Composite Catalysts for Fuel Cells[J]. Nature, 2006,443(7107): 63-66.
[24] Wang S., Iyyamperumal E., Roy A., et al. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: A synergetic effect by codoping with boron and nitrogen[J]. Angewandte Chemie International Edition, 2011(123): 11960-11964.
[25] Huang S. F., Terakura K., Ozaki T., et al. First-principles calculation of the electronic properties of graphene clusters doped with nitrogen and boron: Analysis of catalytic activity for the oxygen reduction reaction[J]. Phys. Rev. B,2009(80): 235410.
[26] Chen L., Cui X., Wang Y., et al. One-step synthesis of sulfur doped graphene foam for oxygen reduction reactions[J]. Dalton Trans., 2014(43): 3420.
[27] Yu D., Xue Y., Dai L. M. Vertically-aligned carbon nanotube arrays co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction[J]. The Journal of Physical Chemistry Letters, 2012(3): 2863-2870.
[28] Jasinski R. A new fuel cell cathode catalyst[J]. Nature,1964, 201(4925): 1212-1213.
[29] Ohms D., Herzog S., Franke R., et al., Influence of metal ions on the electrocatalytic oxygen reduction of carbon materials prepared from pyrolyzed polyacrylonitrile[J]. Journal of Power Sources, 1992, 38(3): 327-334.
[30] Van Veen J. A. Rob, Van Baar Jan F., Kroese Kees J. Effect of heat treatment on the performance of carbon-supported transition-metal chelates in the electrochemical reduction of oxygen[J]. Journal of the Chemical Society, 1981, 77(11): 2827-2843.
[31] Wiesener K., Ohms D., Neumann V., et al. N4 macrocycles as electrocatalysts for the cathodic reduction of oxygen[J]. Materials Chemistry and Physics, 1989, 22(3/4): 457-475.
[32] Lefèvre M., Proietti E., Jaouen F., et al. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science, 2009(324): 71-74.
[33] Bashyam R., Zelenay P. A class of non-precious metal composite catalysts for fuel cells[J]. Nature, 2006(443): 63-66.
[34] Wang H., Cote R., Faubert G., et al. Effect of the pretreatment of carbon black supports on the activity of Febased electrocatalysts for the reduction of oxygen[J]. The Journal of Physical Chemistry B, 1999, 103(12): 2042-2049.
[35] Lefèvre M., Dodelet J. P., Bertrand P. O2Reduction in PEM Fuel Cells: Activity and Active Site Structural Information for Catalysts Obtained by the Pyrolysis at High Temperature of Fe Precursors[J]. The Journal of Physical Chemistry B, 2000(104): 11238-11247.
[36] Liu G., Li X., Ganesan P., et al. Development of nonprecious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon[J]. Applied Catalysis B: Environmental, 2009(93): 156-165.
[37] Faubert G., Lalande G., Cté R., et al. Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: Physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells[J]. Electrochimica Acta, 1996(41): 1689-1701.
[38] Lalande G., Cté R., Tamizhmani G., et al., Physical, chemical and electrochemical characterization of heat-treated tetracarboxylic cobalt phthalocyanine adsorbed on carbon black as electrocatalyst for oxygen reduction in polymer electrolyte fuel cells[J]. Electrochimica Acta, 1995(40): 2635-2646.
[39] Okada T., Gokita M., Yuasa M., et al. Oxygen Reduction Characteristics of Heat-Treated Catalysts Based on Cobalt-Porphyrin Ion Complexes, Journal of The Electrochemical Society[J]. 1998(145): 815-822.
[40] Gouérec P., Biloul A., Contamin O., et al. Oxygen reduction in acid media catalyzed by heat treated cobalt tetraazaannulene supported on an active charcoal: correlations between the performances after longevity tests and the active site configuration as seen by XPS and ToF-SIMS[J]. Journal of Electroanalytical Chemistry, 1997(422): 61-75.
[41] Gojković S. L., Gupta S., Savinell R. F. Heat-treated iron(Ⅲ) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction: Part Ⅱ. Kinetics of oxygen reduction[J]. Journal of Electroanalytical Chemistry, 1999(462): 63-72.
[42] Niwa H., Saito M., Kobayashi M., et al. Probing carbon edge exposure of iron phthalocyanine-based oxygen reduction catalysts by soft X-ray absorption spectroscopy[J]. Journal of Power Sources, 2013(223): 30-35.
Review of Fuel Cell Cathode Oxygen Reduction Electrode Materials
LIN Jie
(College of Chemistry and Material Engineering, Wenzhou University, Wenzhou 325000, China)
At present, platinum based materials were the most effective oxygen reduction reaction catalysts in fuel cells cathode oxygen reduction. Due to their high cost, scarcity and short life span, wide commercialization of FCs was still limited. Therefore, one of the important research directions in the feld of fuel cells was to design and prepare a novel structure of carbon-based non-precious metal catalysts with low cost and high cycle stability. In this paper, the research progress of fuel cell cathode oxygen reduction electrode materials was simply summarized.
fuel cells; ORR; electrode materials
TM 911
A
1671-9905(2016)05-0040-04
2016-03-17