H3f(t,x)≤α(1-p)(1-M)a,(t,x)∈J×[0,a] ;
H5f(t,x)≤α(1-p)(1-M)c,(t,x)∈J×[0,c].
则边值问题(1)至少有3个正解x1,x2,x3,且满足:
即φ(Sx)>b,对所有的x∈P(φ,b,c).这表明引理5的条件a满足.
由引理5可知,边值问题(1)至少有3个正解x1,x2,x3,且满足:
4 应用举例
为了证明结论的有效性,现给出2个例子.
例1 考虑边值问题
(7)
由定理1可得此边值问题(7)至少有1个正解.
例2 考虑边值问题
(8)
这里取
那么,由定理2可知,此边值问题(8)至少有3个正解x1,x2,x3,且满足:
[1] KILBAS A A,SRIVASTAVA H M,Trujillo J J.Theory and applications of fractional differential equations[M].Amsterdam: Elsevier Beasloten Vennootschap,2006.
[2] 白占兵.分数阶微分方程边值问题理论及应用[M].北京: 中国科学技术出版社,2012.
[3] JIA M,LIU X P.Multiplicity of solutions for integral boundary value problems of fractional differential equations with upper and lower solutions[J].Applied Mathematics and Computation,2014,232:313-323.
[4] LIN L G,LIU X P,FANG H Q.Method of upper and lower solutions for fractional differential equations[J].Electronic Journal of Differential Equations,2012(100):596-602.
[5] 靳威,寇春海.分数阶微分方程积分边值问题正解的存在性[J].东华大学学报(自然科学版),2013,39(5):695-698.
[6] JIA M,LIU X P.Three nonnegative solutions for fractional differential equations with integral boundary conditions[J].Computers and Mathematics with Applications,2011,62(3):1405-1412.
[7] 刘帅,贾梅,秦小娜.带积分边值条件的分数阶微分方程解的存在性和唯一性[J].上海理工大学学报,2014,36(5):409-415.
[8] 李燕,刘锡平,李晓晨,等.具有逐项分数阶导数的微分方程边值问题解的存在性[J].纯粹数学与应用数学,2016,32(5):470-480.
[9] 李秀红,寇春海,刘晓波.分数阶微分方程边值问题解的存在性[J].东华大学学报(自然科学版),2011,37(2):240-245.
[10] ALSAEDI A,NTOUYAS S K,AGRWAL R P,et al.On caputo type sequential fractional differential equations with nonlocal integral boundary conditions[J].Advances in Difference Equations,2015,2015(1):1-12.
[11] AHMAD B,NIETO J J.Sequential fractional differential equations with three-point boundary conditions[J].Computer and Mathematics with Applications,2012,64(10):3046-3052.
[12] CHAI G Q.Existence results for boundary value problems of nonlinear fractional differential equations[J].Computers and Mathematics with Applications,2011,62(5):2374-2382.
[13] 吴贵云,刘锡平,杨浩.具有微分算子的分数阶微分方程边值问题解的存在性与唯一性[J].上海理工大学学报,2015,37(3):205-209.
(编辑:石 瑛)
Existence of Positive Solutions for the Integral Boundary Value Problem of Sequential Fractional Differential Equations
LI Yan, LIU Xiping, LI Xiaochen, ZHANG Sha
(CollegeofScience,UniversityofShanghaiforScienceandTechnology,Shanghai200093,China)
The existence and multiplicity of positive solutions were investigated for a class of integral boundary value problems of fractional differential equations with sequential fractional derivatives.The existence of at least one positive solution and three positive solutions for integral boundary value peroblems was obtained respectively,by using the fixed point theorem on cone and the Leggett-Williams fixed point theorem.Two examples were given to illustrate the results.
fractionaldifferentialequation;sequentialfractionalderivative;integralboundaryvalueproblem;fixedpointtheoremoncone;positivesolution
1007-6735(2016)06-0511-06
10.13255/j.cnki.jusst.2016.06.001
2016-07-01
国家自然科学基金资助项目(11171220);沪江基金资助项目(B14005)
李 燕(1991-),女,硕士研究生.研究方向:常微分方程理论与应用.E-mail:764250156@qq.com
刘锡平(1962-),男,教授.研究方向:常微分方程理论与应用.E-mail:xipingliu@163.com
O 175.8
A