王新新,陆钦池
上海交通大学医学院附属仁济医院神经内科,上海 200127
脑胶质瘤继发癫痫的发病机制及治疗
王新新,陆钦池
上海交通大学医学院附属仁济医院神经内科,上海 200127
脑胶质瘤是脑部肿瘤最常见的类型,30%~50%的脑胶质瘤患者可继发癫痫发作。部分脑胶质瘤患者在接受肿瘤切除术后依然有癫痫发作。因此,探讨脑胶质瘤继发癫痫的发病机制及治疗具有重要的临床意义。本文对脑胶质瘤继发癫痫的发病机制进行探讨,包括谷氨酸及其转运体的变化、脑胶质瘤细胞内Cl-浓度调节异常、γ-氨基丁酸(gamma-amino butyric acid,GABA)信号通路介导的抑制性作用的变化以及哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路异常等,并介绍了基于脑胶质瘤继发癫痫发病机制的治疗药物,包括胱氨酸-谷氨酸转运体(cystineglutamate transporter,xCT)阻断剂柳氮磺吡啶、Cl-浓度调节剂布美他尼以及mTOR抑制剂雷帕霉素等,以期为脑胶质瘤继发癫痫提供新的有效治疗药物。本文还对控制脑胶质瘤继发癫痫发作的传统抗癫痫药物(anti-epileptic drugs,AEDs)的使用方法进行了小结。
神经胶质瘤;癫痫;发病机制;治疗
To cite: WANG X X, LU Q C. Pathogenesis of glioma-associated epilepsy and its therapy.J Neurol and Neurorehabil, 2016, 12(4):208-214.
脑胶质瘤是脑部最常见的肿瘤类型,通常继发癫痫发作[1-4]。脑胶质瘤继发癫痫发作与肿瘤细胞分化程度存在一定的关联,已有研究发现90%的继发癫痫发作的脑胶质瘤为低分化胶质瘤,50%~60%为高分化胶质瘤[3,5]。癫痫发作可能是脑胶质瘤最初的临床症状,也可以在脑胶质瘤的治疗过程中出现。反复的癫痫发作不仅给患者带来严重的生理和心理负担,还增加了脑胶质瘤患者的死亡率[6]。因此,对脑胶质瘤继发癫痫发作进行及时而有效的干预治疗,显得尤为重要。然而,部分接受手术切除治疗的脑胶质瘤患者在术后仍有癫痫发作[7];部分脑胶质瘤继发的癫痫属于药物难治性癫痫,因此传统的抗癫痫药物(anti-epileptic drugs,AEDs)对这部分癫痫发作的疗效较差[2]。导致这一现象的原因是肿瘤内部及其周围组织发生复杂的结构和分子变化,包括多种耐药蛋白的表达、兴奋性与抑制性通路的失衡以及早期手术对脑组织的损伤等。因此,了解脑胶质瘤继发癫痫的发病机制,并针对这些发病机制进行干预,对有效抑制胶质瘤继发癫痫发作具有重要的临床意义。
神经网络兴奋性与抑制性的失衡通常会引发痫样放电。任何能够增强谷氨酸能通路介导的兴奋性作用或降低γ-氨基丁酸(gamma-amino butyric acid,GABA)通路介导的抑制性作用的因素,均可引发癫痫发作。脑胶质瘤患者体内发生的一系列病理生理变化,包括递质及其受体的变化、血管重建以及细胞结构和信号转导通路的变化,都将不同程度地导致神经网络兴奋性的改变。BEAUMONT等[8]认为,脑胶质瘤继发癫痫涉及多种机制,包括代谢失衡、pH值异常、递质及其受体的改变,免疫系统的过度激活等均不同程度地参与了癫痫的发生。本文从谷氨酸及其转运体的异常、细胞内Cl-浓度与GABA信号通路异常和哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路异常这3个方面探讨脑胶质瘤继发癫痫的发病机制;根据相关机制探讨胱氨酸-谷氨酸转运体(cystineglutamate transporter,xCT)阻断剂柳氮磺吡啶、Cl-浓度调节剂布美他尼和mTOR抑制剂雷帕霉素治疗脑胶质瘤继发癫痫的最新进展;对控制脑胶质瘤继发癫痫发作的常规AEDs使用方法进行总结。
1.1 谷氨酸及其转运体的异常
在脑胶质瘤及其周围组织中,常出现谷氨酸水平的调节异常。文献报道,脑胶质瘤细胞外的谷氨酸水平超过正常组织细胞外水平的10倍[9]。导致脑胶质瘤细胞外谷氨酸水平升高的因素有很多,其具体机制见图1所示。脑胶质瘤组织内的xCT水平通常较高[1,10-12],xCT可将脑胶质瘤细胞内的谷氨酸转运至细胞外,并将细胞外的胱氨酸转运至细胞内。被转运至脑胶质瘤细胞内的胱氨酸经代谢后转化为半胱氨酸,进而合成一种抗氧化剂谷胱甘肽[13],可促进脑胶质瘤细胞的增殖;同时,细胞外增多的谷氨酸不能被有效地重吸收回细胞内,这是由于脑胶质瘤细胞膜上表达的兴奋性氨基酸转运体1(excitatory amino acid transporter 1,EAAT1)和兴奋性氨基酸转运体2(excitatory amino acid transporter 2,EAAT2)水平下调[1,10],而脑胶质瘤周围组织中激活的小胶质细胞表达的EAAT2水平下降,从而进一步导致脑胶质瘤细胞外谷氨酸水平的升高[14]。因此,脑胶质瘤细胞外增多的谷氨酸就会作用于神经元突触后膜上的N-甲基-D-天冬氨酸(N-methyl-D-aspartate,NMDA)受体和α-氨基-3-羟基-5-甲基-4-异噁唑丙酸(α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid,AMPA)受体,使神经元发生去极化,进而引发同步化痫样放电。此外,70%~80%的低级别脑胶质瘤伴有异柠檬酸脱氢酶1(isocitrate dehydrogenase 1,IDH1)基因突变[15]。IDH1基因突变会导致异柠檬酸不能转变为α-酮戊二酸,反而转变为D-2-羟戊二酸(D-2-hydroxyglutarate,D-2HG)[16]。D-2HG的结构与谷氨酸类似,细胞间隙内大量聚集的D-2HG可激动神经元突触后膜谷氨酸受体,进而导致神经元发生去极化,发生同步化痫样放电。已有文献报道,脑胶质瘤细胞中xCT过表达[17]和IDH1基因突变与癫痫发作相关[18-19]。
总之,xCT过表达与IDH1基因突变都将使谷氨酸水平升高,继而激活大量的谷氨酸受体,使神经元兴奋性增加,促进同步化痫样放电的产生。
图1 谷氨酸信号通路在脑胶质瘤继发癫痫发作中的作用机制。脑胶质瘤细胞膜上xCT过表达及星形胶质细胞内EAAT1/2表达不足是导致脑胶质瘤细胞外谷氨酸水平升高的主要因素。谷氨酸水平升高会过度激活NMDA受体和AMPA受体,进而引起突触神经元介导的兴奋性电流增加,继而引发同步化痫样放电
1.2 脑胶质瘤细胞内Cl-浓度与GABA信号通路异常
HAGLUND等[20]和MARCO等[21]发现,脑胶质瘤患者脑组织锥体神经元邻近的GABA能突触密度降低,GABA介导的抑制性作用减弱。锥体细胞内Cl-浓度的变化会影响神经元对GABA的反应以及胶质细胞的特性。正常的成熟神经元细胞内的K+浓度高于细胞外,K+-Cl-共转运体2(K+-Cl-CO-transporter 2,KCC2)依赖于这种浓度梯度将Cl-运至细胞外,从而使细胞内的Cl-浓度维持于较低浓度。然而,脑胶质瘤细胞常伴有Cl-转运体的改变,即KCC2表达下调,而Na+-K+-Cl-共转运体1(Na+-K+-Cl-CO-transporter 1,NKCC1)表达上调。NKCC1的作用主要是将细胞外的Cl-转运至细胞内,其表达上调可导致细胞内Cl-浓度高于细胞外。文献报道,脑胶质瘤细胞内的Cl-浓度约为正常细胞的10倍[22],GABA作用于GABA A型受体(GABA type A receptor,GABAAR)后可使Cl-出现外流,继而发生去极化作用,促进癫痫样活动的发生。已有文献报道,海马硬化癫痫样活动的产生与Cl-调节异常导致的GABA能信号通路异常有关[23-24]。此外,脑胶质瘤细胞及激活的小胶质细胞释放的脑源性神经生长因子(brain-derived neurotrophic factor,BDNF)可上调锥体神经元细胞膜上NKCC1的表达,降低KCC2的表达[25],从而导致锥体神经元内Cl-浓度调节异常。也有证据表明,NMDA介导的活动会抑制KCC2的表达[26],因此脑胶质瘤组织中异常的谷氨酸能信号通路也会导致Cl-浓度调节障碍。
总之,脑胶质瘤细胞膜上Cl-转运体表达异常可使细胞内Cl-浓度高于细胞外,使GABA介导的抑制性作用转变为兴奋性作用,继而促使神经元兴奋性升高,产生同步化癫样放电活动。
1.3 mTOR信号通路异常
脑胶质瘤发生的病理生理过程中,常伴有mTOR信号通路调节异常,而mTOR信号通路的功能障碍是癫痫发生的原因之一。mTOR信号通路在结节硬化症(tuberous sclerosis complex,TSC)的病理生理过程中发挥着一定的作用。常染色体显性基因TSC1和TSC2突变与TSC有关,TSC1和TSC2基因突变会导致mTOR复合体1和2活性增加,进一步增加神经元兴奋性[27]。在TSC动物模型中,海马CA1区锥体神经元中的谷氨酸能和GABA能信号通路均发生了改变;mTOR信号通路减弱了GABA介导的抑制作用,却能增强谷氨酸介导的兴奋性作用,从而使海马神经网络的兴奋性发生改变[28]。已有文献报道,mTOR参与了癫痫性脑病的形成[29]。此外,脑胶质瘤细胞中过度激活的mTOR信号通路及某些突变的基因与药物难治性癫痫相关[30]。由此可见,mTOR信号通路异常与脑胶质瘤继发癫痫的发生密切相关。
对脑胶质瘤继发癫痫发病机制的认识有助于针对相应的发病机制进行干预治疗,这对于指导手术疗效差及常规AEDs治疗无效的脑胶质瘤继发癫痫的治疗具有重要的临床意义。
2.1 谷氨酸能信号通路的调控
由于脑胶质瘤细胞外谷氨酸水平升高是脑胶质瘤继发癫痫的发病机制之一,因此对谷氨酸转运体及其受体进行调控可以作为治疗脑胶质瘤继发癫痫的途径之一。前期临床模型及癫痫患者的遗传药理学数据证实了这一治疗途径的有效性。xCT阻断剂柳氮磺吡啶最初被美国食品药物管理局(Food and Drug Administration,FDA) 和欧洲药品管理局(European Medicines Agency,EMA)批准用于克罗恩病的治疗。最近的动物实验结果显示,柳氮磺吡啶可抑制脑胶质瘤细胞过表达xCT,从而抑制谷氨酸水平的升高,减弱癫痫样活动[31]。研究显示,通过小干扰RNA抑制人脑胶质瘤细胞xCT系统的活性后,脑胶质瘤细胞释放谷氨酸减少,NMDA介导的兴奋性作用降低[11]。此外,2012年,非竞争性AMPA受体拮抗剂吡仑帕奈在欧洲和美国获得批准用于治疗部分性癫痫发作,同时也被用于脑胶质瘤继发癫痫发作的治疗。另一项脑胶质瘤动物模型的研究结果表明,NMDA受体拮抗剂地佐环平、1-氨基-3,5-二甲基金刚烷胺盐酸盐和利鲁唑可以抑制脑胶质瘤细胞增殖以及继发癫痫的发作[32-33],其中1-氨基-3,5-二甲基金刚烷胺盐酸盐已被应用于Ⅱ期临床试验。
此外,还可通过核受体过氧化物酶增殖体激活受体γ(peroxisome proliferator-activatedreceptor-γ,PPAR-γ)来调控脑胶质瘤细胞外谷氨酸的水平。PPAR-γ是一种转录调节子,可以调节一系列基因的表达,包括编码EAAT2基因。PPAR-γ激动剂吡格列酮可以上调脑胶质瘤细胞表达EAAT2,从而促进细胞外谷氨酸的转运,继而降低细胞外谷氨酸的水平[34]。PPAR-γ激动剂还可通过阻断烟碱型乙酰胆碱受体介导的突触后电流而抑制癫痫样活动[35]。此外,IDH1基因突变抑制剂可以抑制IDH1基因突变的脑胶质瘤细胞合成D-2HG,进而抑制癫痫样活动的发生[36]。
2.2 脑胶质瘤细胞内Cl-水平及GABA能信号通路的调控
脑胶质瘤细胞内Cl-浓度的变化以及与其相关的GABA能信号通路的改变是脑胶质瘤继发癫痫的发病机制之一,因此调节Cl-转运体及其相关受体也成为治疗脑胶质瘤继发癫痫的又一条途径。
布美他尼是NKCC1的相对特异性阻断剂。既往研究表明,布美他尼可以抑制肿瘤细胞的迁移和增殖[22]。来自于离体及在体动物癫痫模型[37-38]和临床癫痫患者[39]的数据显示,布美他尼具有抑制痫样放电的作用。此外,还有关于布美他尼应用于新生儿或成年癫痫患者的病例报告,但由于布美他尼的不良反应而使该药的临床应用受到限制,因此研发与布美他尼具有相同药理学特征的类似药物已成为研究的焦点。LYKKE等[40]已研发出与布美他尼具有相似结构但对NKCC1特异性更高的类似物,为癫痫的治疗提供了一种新的药物。
增强KCC2的作用曾被认为是治疗脑胶质瘤继发癫痫的另一种方法。然而,有研究在恢复大鼠KCC2功能而使脑胶质瘤细胞内Cl-水平恢复至正常后,并未发现离体脑片癫痫样活动被抑制或削弱,对此可能的解释是KCC2激活导致K+外流增加[41]。因此,应更加全面而深入地理解KCC2在癫痫发生中的作用。
2.3 mTOR信号通路的调控
mTOR信号通路异常参与了脑胶质瘤继发癫痫的病理过程。mTOR抑制剂包括雷帕霉素和依维莫司等。已有研究认为,雷帕霉素可以抑制癫痫动物模型的痫样放电或降低其发作频率[42]。依维莫司是经美国FDA和EMA批准的抗肿瘤药物,同时也可用于治疗TSC。目前已证实,依维莫司可以通过缩小肿瘤组织的体积以降低癫痫发作的频率[43]。一项关于依维莫司的Ⅲ期临床试验正在评估依维莫司对于脑胶质瘤继发复杂部分性癫痫发作的疗效[44]。
脑胶质瘤继发癫痫发作常表现为部分起始性癫痫发作,一般在首次癫痫发作出现后开始进行治疗[45]。目前尚无证据证实预防性用药可有效抑制癫痫发作。国际抗癫痫联盟(International League Against Epilepsy,ILAE)根据Meta分析的结果达成共识,认为大多数AEDs对控制成年部分性癫痫发作有效,其中A级推荐包括左乙拉西坦、唑尼沙胺、卡马西平和苯妥英钠,B级推荐为丙戊酸,C级推荐包括加巴喷丁、拉莫三嗪、奥卡西平、苯巴比妥、托吡酯和氨基己酸。然而,最终还是要依据每一例患者的具体情况来选择合适的药物,诸如年龄、性别、体质量、病史、药物不良反应所致风险、并发症以及联合用药时药物之间的相互作用等。
一项关于AEDs治疗的临床研究结果表明,丙戊酸单药可使55%~78%的脑胶质瘤(低级别和高级别)继发癫痫发作得以缓解[46]。左乙拉西坦和丙戊酸被认为是控制部分性癫痫发作和局灶性癫痫引起的癫痫发作的首选药物,且耐受性良好[47]。拉莫三嗪对于控制脑胶质瘤继发癫痫发作同样有效,耐受性也较好,并且与丙戊酸钠具有协同作用[48]。表1对用于控制脑胶质瘤继发癫痫发作相关AEDs的使用方法进行了总结。
表1 控制脑胶质瘤继发癫痫发作的相关抗癫痫药物[47]
综上所述,癫痫发作是脑胶质瘤患者较常见的临床表现之一,除了控制症状发作以外,还应针对其发病机制从根本上进行较早期的干预治疗。脑胶质瘤继发癫痫发作的发病机制复杂,谷氨酸能、GABA能和mTOR信号通路的改变均参与其中。因此,深入了解这些信号通路在脑胶质瘤继发癫痫发作的病理生理过程中的作用,有助于针对相应的靶点实施干预阻断,以及研发有效且不良反应较小的靶向药物。此外,在使用AEDs时,应随时监测血药浓度,并根据血药浓度及时调整药物剂量,从而避免药物不良反应的发生。
[1]YUEN T l, MOROKOFF A P, BJORKSTEN A,et al. Glutamate is associated with a higher risk of seizures in patients with gliomas[J].Neurology, 2012, 79(9):883-889.
[2]lUCHl T, HASEGAWA Y, KAWASAKl K,et al. Epilepsy in patients with gliomas: incidence and control of seizures[J].J Clin Neurosci, 2015, 22(1):87-91.
[3]VAN BREEMEN M S, WlLMS E B, VECHT C J. Epilepsy in patients with brain tumours: epidemiology, mechanisms, and management[J].Lancet Neurol, 2007, 6(5):421-430.
[4]CASClNO G D. Epilepsy and brain tumors: implications for treatment[J].Epilepsia, 1990, 31(Suppl 3):S37-S44.
[5]RATHORE C, THOMAS B, KESAVADAS C,et al. Seizure characteristics and prognostic factors of gliomas[J].Epilepsia, 2013, 54(9):12-17.
[6]TAPHOORN M J. Neurocognitive sequelae in the treatment of low-grade gliomas[J].Semin Oncol, 2003, 30(6):45-48.
[7]KÖHLlNG R, SENNER V, PAULUS W,et al. Epileptiform activity preferentially arises outside tumor invasion zone in glioma xenotransplants[J].Neurobiol Dis, 2006, 22(1):64-75.
[8]BEAUMONT A, WHlTTLE l R. The pathogenesis of tumour associated epilepsy[J].Acta Neurochir(Wien), 2000,142(1):1-15.
[9]MARCUS H J, CARPENTER K L, PRlCE S J,et al.ln vivoassessment of high-grade glioma biochemistry using microdialysis: a study of energy-related molecules, growth factors and cytokines[J].J Neurooncol, 2010, 97(1):11-23.
[10]YE Z C, ROTHSTElN J D, SONTHElMER H. Compromised glutamate transport in human glioma cells: reduction-mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystineglutamate exchange[J].J Neurosci, 1999, 19(24):10767-10777.
[11]TAKANO T, LlN J H, ARCUlNO G,et al. Glutamate release promotes growth of malignant gliomas[J].Nat Med, 2001, 7(9):1010-1015.
[12]SHAMJl M F, FRlC-SHAMJl E C, BENOlT B. Brain tumors and epilepsy: pathophysiology of peritumoral changes[J].Neurosurg Rev, 2009, 32(3):275-284.
[13]KANDlL S, BRENNAN L, MCBEAN G J. Glutathione depletion causes a JNK and p38MAPK-mediated increase in expression of cystathionine-gamma-lyase and upregulation of the transsulfuration pathway in C6 glioma cells[J].Neurochem lnt, 2010, 56(4):611-619.
[14]BUCKlNGHAM S C, ROBEL S. Glutamate and tumor-associated epilepsy: glial cell dysfunction in the peritumoral environment[J].Neurochem lnt, 2013, 63(7):696-701.
[15]STOCKHAMMER F, MlSCH M, HELMS H J,et al.lDH1/2 mutations in WHO grade ll astrocytomas associated with localization and seizure as the initial symptom[J].Seizure, 2012, 21(3):194-197.
[16]SANSON M, MARlE Y, PARlS S,et al. lsocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas[J].J Clin Oncol, 2009, 27(25):4150-4154.
[17]ROBERT S M, BUCKlNGHAM S C, CAMPBELL S L,et al. SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma[J].Sci Transl Med, 2015, 7(289):286-289.
[18]WANG Z F, CHEN H L. Relationship betweenlDH1 mutation and preoperative seizure in low-grade gliomas: A meta-analysis[J].Clin Neurol Neurosurg, 2016, 148:79-84.
[19]ZOU Y, BAl H X, WANG Z,et al. Association oflDH1/2 mutation with preoperative seizure in low-grade gliomas: how strong is the evidence[J].Epilepsy Res, 2015, 112:154-155.
[20]HAGLUND M M, BERGER M S, KUNKEL D D,et al. Changes in gamma-aminobutyric acid and somatostatin in epileptic cortex associated with low-grade gliomas[J].J Neurosurg, 1992, 77(2):209-216.
[21]MARCO P, SOLA R G, RAMÓN Y CAJAL S,et al. Loss of inhibitory synapses on the soma and axon initial segment of pyramidal cells in human epileptic peritumoural neocortex: implications for epilepsy[J].Brain Res Bull, 1997, 44(1):47-66.
[22]HAAS B R, SONTHElMER H. lnhibition of the Sodium-Potassium-Chloride Cotransporter lsoform-1 reduces glioma invasion[J].Cancer Res, 2010, 70(13):5597-5606.
[23]MUÑOZ A, MÉNDEZ P, DEFELlPE J,et al. Cation-chloride cotransporters and GABA-ergic innervation in the human epileptic hippocampus[J].Epilepsia, 2007, 48(4):663-673.
[24]PALMA E, AMlCl M, SOBRERO F,et al. Anomalous levels of Cl-transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory[J].Proc Natl Acad Sci U S A, 2006, 103(22):8465-8468.
[25]COULL J A, BEGGS S, BOUDREAU D,et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain[J].Nature, 2005, 438(7070):1017-1021.
[26]LEE H H, DEEB T Z, WALKER J A,et al. NMDA receptor activity downregulates KCC2 resulting in depolarizing GABAA receptormediated currents[J].Nat Neurosci, 2011, 14(6):736-743.
[27]LlPTON J O, SAHlN M. The neurology of mTOR[J].Neuron, 2014, 84(2):275-291.
[28]BATEUP H S, JOHNSON C A, DENEFRlO C L,et al. Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis[J].Neuron, 2013, 78(3):510-522.
[29]EPl4K CONSORTlUM, EPlLEPSY PHENOME/ GENOME PROJECT, ALLEN A S,et al. De novo mutations in epileptic encephalopathies[J].Nature, 2013, 501(7466):217-221.
[30]PRABOWO A S, lYER A M, VEERSEMA T J,et al.BRAFV600E mutation is associated with mTOR signaling activation in glioneuronal tumors[J].Brain Pathol, 2014, 24(1):52-66.
[31]BUCKlNGHAM S C, CAMPBELL S L, HAAS B R,et al. Glutamate release by primary brain tumors induces epileptic activity[J].Nat Med, 2011, 17(10):1269-1274.
[32]lSHlUCHl S, YOSHlDA Y, SUGAWARA K,et al. Ca2+-permeable AMPA receptors regulate growth of human glioblastoma via Akt activation[J].J Neurosci, 2007, 27(30):7987-8001.
[33]YOHAY K, TYLER B, WEAVER K D,et al. Efficacy of local polymer-based and systemic delivery of the anti-glutamatergic agents riluzole and memantine in rat glioma models[J].J Neurosurg, 2014, 120(4):854-863.
[34]CHlNG J, AMlRlDlS S, STYLLl S S,et al. The peroxisome proliferator activated receptor gamma agonist pioglitazone increases functional expression of the glutamate transporter excitatory amino acid transporter 2 (EAAT2) in human glioblastoma cells[J].Oncotarget, 2015, 6(25):21301-21314.
[35]SAHA L, BHANDARl S, BHATlA A,et al. Antikindling effect of bezafibrate, a peroxisome proliferator-activated receptors alpha agonist, in pentylenetetrazole induced kindling seizure model[J].J Epilepsy Res, 2014, 4(2):45-54.
[36]ROHLE D, POPOVlCl-MULLER J, PALASKAS N,et al. An inhibitor of mutant lDH1 delays growth and promotes differentiation of glioma cells[J].Science, 2013, 340(6132):626-630.
[37]RHElMS S, REPRESA A, BEN-ARl Y,et al. Layer-specific generation and propagation of seizures in slices of developing neocortex: role of excitatory GABAergic synapses[J].J Neurophysiol, 2008, 100(2):620-628.
[38]NARDOU R, YAMAMOTO S, CHAZAL G,et al. Neuronal chloride accumulation and excitatory GABA underlie aggravation of neonatal epileptiform activities by phenobarbital[J].Brain, 2011, 134(4):987-1002.
[39]HUBERFELD G, WlTTNER L, CLEMENCEAU S,et al. Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy[J].J Neurosci, 2007, 27(37):9866-9873.
[40]LYKKE K, TÖLLNER K, FElT P W,et al. The search for NKCC1-selective drugs for the treatment of epilepsy: Structurefunction relationship of bumetanide and various bumetanide derivatives in inhibiting the human cation-chloride cotransporter NKCC1A[J].Epilepsy Behav, 2016, 59:42-49.
[41]HAMlDl S, AVOLl M. KCC2 function modulatesin vitroictogenesis[J].Neurobiol Dis, 2015, 79:51-58.
[42]ZENG L H, XU L, GUTMANN D H,et al. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex[J].Ann Neurol, 2008, 63(4):444-453.
[43]KRUEGER D A, WlLFONG A A, HOLLANDBOULEY K,et al. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex[J].Ann Neurol, 2013, 74(5):679-687.
[44]CARDAMONE M, FLANAGAN D, MOWAT D,et al. Mammalian target of rapamycin inhibitors for intractable epilepsy and subependymal giant cell astrocytomas in tuberous sclerosis complex[J].J Pediatr, 2014, 164(5):1195-1200.
[45]KRUMHOLZ A, WlEBE S, GRONSETH G S,et al. Evidence-based guideline: Management of an unprovoked first seizure in adults: Report of the Guideline Development Subcommittee of the American Academy of Neurology and the American Epilepsy Society[J].Neurology, 2015, 84(16):1705-1713.
[46]WlCK W, MENN O, MElSNER C,et al. Pharmacotherapy of epileptic seizures in glioma patients: who, when, why and how long[J].Onkologie, 2005, 28(8-9):391-396.
[47]VECHT C J, KERKHOF M, DURAN-PENA A. Seizure prognosis in brain tumors: new insights and evidence-based management[J].Oncologist, 2014, 19(7):751-759.
[48]BRODlE M J, SlLLS G J. Combining antiepileptic drugs—rational polytherapy[J].Seizure, 2011, 20(5):369-375.
Pathogenesis of glioma-associated epilepsy and its therapy
WANG Xinxin, LU Qinchi
Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
Epilepsy can be developed in 30%-50% of the patients with glioma, which is the most common form of brain tumors. The seizures induced by glioma are still remained after resection of glioma lesions, therefore it is essential and meaningful to explore the pathogenesis and the related treatment of glioma-associated epilepsy. This paper discusses the pathogenic mechanisms involved in the development of glioma-associated epilepsy, including the alteration of glutamate and its transporters, the dysregulation of intracellular chloride (Cl)—, the alteration of gamma-amino butyric acid (GABA) signal pathway-mediated inhibitory efect, and the abnormalities in mammalian target of rapamycin (mTOR) signal pathway. The related drugs based on the pathogenic mechanisms of glioma-associated epilepsy are summarized, such as sulfasalazine—the blocker of cystine-glutamate transporter (xCT), bumetanide—the regulator for Cl—, and rapamycin which is an inhibitorof mTOR, in order to provide efective treatment strategies for glioma-associated epilepsy. Finally, the guidance about the use of anti-epileptic drugs (AEDs) in controlling the gliomaassociated seizures is also summarized.
Glioma; Epilepsy; Pathogenesis; Therapy
LU Qinchi
10.12022/jnnr.2016-0058
王新新,陆钦池. 脑胶质瘤继发癫痫的发病机制及治疗[J]. 神经病学与神经康复学杂志, 2016, 12(4):208-214.
陆钦池
E-MAILqinchilu@yahoo.com.cn
E-MAIL ADDRESSqinchilu@yahoo.com.cn
CONFLlCT OF lNTEREST: The authors have no conficts of interest to disclose. Received Sept. 12, 2016; accepted for publication Oct. 10, 2016
Copyright © 2016 byJournal of Neurology and Neurorehabilitation