张洪映,崔 红
(河南农业大学烟草学院,郑州 450002)
烟草重要基因篇 13:
烟草腺毛发生和发育相关基因
张洪映,崔 红*
(河南农业大学烟草学院,郑州 450002)
摘 要:烟草(Nicotiana tabacum L.)腺毛丰富、类型多样、分泌旺盛,对烟株抗性和烟叶香气品质具有重要影响。对近年来烟草腺毛发生和发育、腺毛分泌物合成相关基因的研究进展进行了综述,并展望了其在烟草叶面化学定向调控和品种改良中的应用潜力。
关键词:烟草;腺毛;发育;分泌物;基因
植物表皮毛是表皮细胞的特化结构。作为植物与环境间的天然屏障,它具有防止水分蒸发、缓冲日光直射、抵抗病原菌、昆虫和极端温度等生理作用[1-2]。烟草(Nicotiana tabacum L.)全株密布表皮毛,形态结构多种多样,由一个至多个细胞组成。依据分泌腺的有无,可分为保护毛(无腺性细胞)和腺毛(有腺性细胞)。一般来说,只有腺毛具有分泌能力,其分泌物构成了烟草叶面化学的重要组成部分[3-4]。烟草叶片腺毛的密度、类型及分泌物积累与烟株抗性和烟叶香气品质密切相关[5-6]。因此,烟草腺毛发生及物质代谢调控对研究烟草逆境胁迫和香气品质具有重要意义。
拟南芥的表皮毛是一种特化的、无腺体的单细胞,可作为一种很好的模式系统来研究表皮毛细胞的分化过程。目前,已经分离到的表皮毛突变体有70多个,包括有无表皮毛、表皮毛簇生、减少、扭曲和玻璃状等6种突变类型,涉及30多个基因[7-8]。其中3种转录因子对于表皮毛的发育启动是必需的:GL1编码一种R2R3 MYB类转录因子,GL3和EGL3(GL3的增强子)编码一种bHLH型转录因子,TTG1编码一种含有WD40结构域的蛋白,是一种转录共调节子[9,10]。免疫共沉淀结果表明,GL1、GL3和TTG1能够形成蛋白复合体,该转录调控的复合体能够决定表皮细胞的命运和模式,进而调控表皮毛的发生和发育[11]。
GL1/GL3/TTG1转录调控复合体是在原初细胞间发挥相互作用的[12]。研究发现GL3/EGL3直接调控下游的GL2(含有HD2-ZIP结构的转录因子),GL1直接调控TTG2(WRKY转录因子),而GL1和TTG1之间不存在互作[13-14]。在这个转录调控模型中,GL1、GL3和TTG1等作为正向调控因子促进表皮毛发生,同时还存在一些负调控因子,例如一些部分同源的MYB蛋白:CPC、TRY以及TRY的增强子 CPC1(ETC1)和 CPC2 (ETC2)[15-17]。其中CPC和TRY是2个重要的负调节基因,属于表皮毛特异表达基因,在嫩叶原基和正在发育的表皮毛细胞中表达。酵母的互作实验表明,CPC或TRY可以通过竞争与bHLH作用进而阻断“激活的”GL1/GL3/TTG1复合体的功能[18]。粒子轰击实验发现,GL1、GL2和GL3均不能在相邻细胞间移动,而CPC、TRY和TTG1可以移动到相邻细胞[10,19-20]。这些证据表明,GL1/GL3/TTG1转录调控复合体能够调控表皮毛的发生。
拟南芥叶片表皮毛的发生和发育受到严格的时空调控,不同的表皮毛发生和发育阶段涉及不同的基因[7-15,21]:影响表皮毛发生及排布的基因包括GL1、GL2、GL3、EGL3、TTG1、MYB23、CPC、TRY、ETC1、ETC2和SAD2;影响表皮毛核内复制的基因包括CPR5、ICK/KRP、HYP6、KAK、RHL2、SIM和SPY;影响表皮毛分支形成的基因包括AN、FRC、STI、TFCC、TFCA和ZWI;影响表皮毛分支生长方向的基因包括BRICK1、CRK、DIS1、DIS2、GRL、KLK、ROP2和WRM。棉花纤维作为一种与单细胞表皮毛类似的结构,其分子调控机制与拟南芥表皮毛相似。
2.1 烟草腺毛发生和发育相关基因
根据微管植物的分类系统,拟南芥和棉花属于蔷薇类,金鱼草、番茄和烟草属于菊类。烟草的腺毛结构不同于拟南芥表皮毛,属于多细胞结构,由1个基细胞、1~5个柄细胞和1~12头细胞组成。组织结构的差异决定腺毛的分子遗传机制具有其特异性。早期的遗传学研究发现,分泌型腺毛的出现由单一位点的等位基因控制。在纯合显性(TeTe)和杂合基因(Tete)存在时表现为分泌型腺毛,纯合隐性时为非分泌型腺毛[22]。Burk等报道有腺型腺毛的出现受3个等位基因控制[23]。目前这些基因的信息尚不清楚。
目前的研究表明,烟草腺毛发生机制与拟南芥有所不同,虽然都受bHLH-WD40调控,但涉及的MYB基因差异很大[24]。有研究发现,烟草自身的R2R3 MYB类转录因子GL1过表达后并不能改变烟草表皮毛的表型,但将从金鱼草中分离出来的R2R3 MYB类转录因子MIXTA和MIXTA LIKE 1,分别在烟草中过表达时,均能导致表皮毛增多,说明烟草中存在MIXTA和MIXTA LIKE 1同源基因,能参与表皮毛发生调控[25-26]。生物信息学分析发现,MIXTA和MIXTA LIKE 1存在几乎完全相同的结合结构域,但都不存在与bHLH互作的保守结构域,表明烟草腺毛的形成可能不受MYB-bHLH-WD40蛋白复合体的调控[27]。烟草TTG1和TTG2基因均可调控植物防卫反应信号的传导,但对腺毛发生和发育的影响未见报道[28-29]。
番茄Woolly (Wo)基因与拟南芥中调控表皮分化的PDF2基因具有73%同源性,是番茄多细胞表皮毛形成的关键基因,能够与细胞周期相关基因SlCycB2互作,从而促使细胞从G2期向M期的转换,最终促进多细胞表皮毛的形成[30]。Wo基因的等位突变体LA1531(WoV)存在2个位点的变异(异亮氨酸-692→精氨酸,天冬氨酸-695→酪氨酸),导致腺毛数量显著增加。在烟草中表达WoV后,整个烟株密布表皮毛,但会导致植株矮小、生长缓慢和花发育畸形。转录组分析结果表明,WoV基因的表达会改变一些重要的代谢途径,包括脂肪酸代谢、氨基酸的合成与代谢,以及植物激素信号传递途径等[31]。
2.2 烟草腺毛分泌物合成基因
烟草腺毛是烟草香气物质合成的主要场所。烟草腺毛分泌物中所积累的双萜烯类(西柏烷类和赖百当类)和糖酯的生物合成主要发生在可分泌腺毛的腺头细胞中。将烟草腺毛cDNA文库随机测序获得的EST序列点制腺毛cDNA芯片,利用该芯片对烟草 K326腺毛和去腺毛叶片基因表达谱进行比较分析,获得207个腺毛优势表达基因,这些基因多与类萜代谢、生物碱代谢、苯丙烷代谢及防御反应相关。其中萜类环化酶、细胞色素 P450加氧酶基因和叶面抗性蛋白基因(T-phylloplanin)均在腺毛特异表达[32]
研究表明,西柏烷二萜的合成反应分为两步:第一步,香叶基香叶基焦磷酸(geranylgeranyl diphosphate,GGPP0在植物质体代谢途径中的西柏三烯醇合酶(cembratrienol synthase,CBTS)的催化作用下,发生环化反应,形成α-和β-CBT-ol[5];第二步,CBT-ol在细胞色素 CYPP450加氧酶(cytochrome P450 hydroxylase,CYP450)的催化作用下,第 6位碳发生羟化反应形成 α-和 β-CBT-diol[33]。通过对CBTS 的候选 cDNA 序列进行的基因沉默处理后的转基因鉴定,在转基因烟草中发现一些西柏烷二萜含量极低的烟株腺毛中都具有CYC-1 基因缺失的mRNA片段,说明该基因编码了CBTS,且在西柏烷二萜合成中具有重要作用[34]。有研究表明,在烟草中负责催化CBT-ol发生羟化反应形成CBT-diol 的羟化酶属于CYP450酶蛋白家族,其编码基因为CYP71D16,抑制该基因表达会增加CBT-ol的含量,阻止CBT-diol的合成,而且植株的抗虫性得到了提高[33,35]。
赖百当类双萜的合成也是通过GGPP发生环化作用而形成的[36]:第一步,GGPP在柯巴基焦磷酸合酶(copalyl diphosphate synthases,CPSs)的作用下形成 8-羟基-柯巴基焦磷酸(8-α-hydroxycopalyl diphosphate,8-OH-CPP)。第二步,8-OHCPP在贝壳杉烯合成酶(kaurene synthase,KS)的催化下转变为顺-冷杉醇或类赖百当二醇。目前的研究发现[37],顺-冷杉醇生物合成途径中的关键基因分别为NtCPS2和NtABS (KS-like),两个基因均在烟草腺毛特异表达。
烟草腺毛的腺头细胞能直接分泌糖酯,在叶片上形成类树脂物质。Choi研究室进行烟草的腺毛特异基因的转录组分析发现,部分脂转移蛋白(lipid transfer protein,LTP)基因在烟草腺毛特异或优势表达[38]。该小组首次克隆4个NtLTP基因,研究发现NtLTP1在长腺毛中特异表达,与腺头细胞的酯类和蜡质分泌、以及蚜虫抗性密切相关[39]。
腺毛对于烟草香气品质和抗性具有重要作用,不同烟草品种腺毛类型、结构、物质代谢及分泌能力各不相同,因而赋予了各自不同的抗性和风味特征。目前,对烟叶腺毛的研究主要集中在形态学观察和分泌物成分鉴定方面,对于腺毛发生和发育的分子机制和腺毛分泌物的生物代谢途径知之甚少,使得烟草科技工作者无法根据栽培和烘烤需要对腺毛进行遗传改良。随着烟草全基因组测序的完成和功能基因组学的开展,烟草腺毛发生和发育、物质代谢和分泌的分子机制将逐步被阐明,从而奠定烟草叶面化学定向改良的理论基础。
参考文献
[1] Johnson H B. Plant pubescence∶ an ecological perspective[J]. Bot Rev,1975,41(3)∶ 233-258.
[2] Mauricio R,Rausher M D. Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense[J]. Evolution,1997,51(5)∶ 1435-1444.
[3] Goodspeed T H. The genus Nicotiana[J]. Chron Bot,1954,16∶ 109-121.
[4] Tanaka M. Leaf hairs in Nicotiana[J]. Hatano Exp Sta Special Bull,1955,6∶ 1-22.
[5] Guo Z,Wagner G J. Biosynthesis of cembratrienols in cell-free extracts from trichomes of Nicotiana tabacum[J]. Plant Sci,1995,110(1)∶ 1-10.
[6] Guo Z H,Serverson R F,Wagner G J. Biosynthesis of the diterpene cis-abienol in cell-free extracts of tobacco trichomes[J]. Arch Biochem Biophys,1994,308(1)∶103-108.
[7] Hulskamp M,Misra S,Jurgens G. Genetic dissection of trichome cell development in Arabidopsis[J]. Cell,1994,76(3)∶ 555-566.
[8] Larkin J C,Oppenheimer D G,Lloyd A M,et al. Roles of the GLABROUS1 and TRANSPARENT TESTA GLABRA genes in Arabidopsis trichome development[J]. Plant Cell,1994,6(8)∶ 1065-1076.
[9] Szymanski D B,Jilk R A,Pollock S M,et al. Control of GL2 expression in Arabidopsis leaves and trichomes[J].Development,1998,125(7)∶ 1161-1171.
[10] Szymanski D B,Lloyd A M,Marks M D. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis[J]. Trends Plant Sci,2000,5(5)∶ 214-219.
[11] Larkin J C,Brown M L,Schiefelbein J. How do cells know what they want to be when they grow up? Lessons from epidermal patterning in Arabidopsis[J]. Annu Rev Plant Biol,2003,54∶ 403-430.
[12] Payne C T,Zhang F,Lloyd A M. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1[J]. Genetics,2000,156(3)∶ 1349-1362.
[13] Morohashi K,Zhao M,Yang M,et al. Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events[J]. Plant Physiol,2007,145(3)∶ 736-746.
[14] Ishida T,Hattori S,Sano R,et al. Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation[J]. Plant Cell,2007,19(8)∶2531-2543.
[15] Schellmann S,Hulskamp M. Epidermal differentiation∶trichomes in Arabidopsis as a model system[J]. Int J Dev Biol,2005,49(5-6)∶ 579-584.
[16] Kirik V,Grini P E,Mathur J,et al. The Arabidopsis TUBULIN-FOLDING COFACTOR A gene is involved in the control of the alpha/beta-tubulin monomer balance[J]. Plant Cell,2002,14(9)∶ 2265-2276.
[17] Kirik V,Simon M,Huelskamp M,et al. The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis[J]. Dev Biol,2004,268(2)∶ 506-513.
[18] Esch J J,Chen M,Sanders M,et al. A contradictory GLABRA3 allele helps define gene interactions controlling trichome development in Arabidopsis[J]. Development,2003,130(24)∶ 5885-5894.
[19] Bouyer D,Geier F,Kragler F,et al. Two-dimensional patterning by a trapping/depletion mechanism∶ the role of TTG1 and GL3 in Arabidopsis trichome formation[J]. PLoS Biol,2008,6(6)∶ e141.
[20] Schellmann S,Schnittger A,Kirik V,et al. TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis[J]. EMBO J,2002,21(19)∶ 5036-5046.
[21] Marks M D. Molecular genetic analysis of trichome development in Arabidopsis[J]. Annu Rev Plant Physiol Plant Mol Biol,1997,48∶ 137-163.
[22] Nielson M T,Jones G A,Collins G B. Inheritance pattern for secreting and nonsecreting glandular trichomes in tobacco[J]. Crop Sci,1982,22(5)∶ 1051-1055.
[23] Burk L G,Chaplin J F,Jackson D M,et al. Inheritance of the glandless leaf trichome trait in Nicotiana tabacum L[J]. Tob Sci,1982,26∶ 51-53.
[24] Glover B J,Perez-Rodriguez M,Martin C. Development of several epidermal cell types can be specified by the same MYB-related plant transcription factor[J]. Development,1998,125(17)∶ 3497-3508.
[25] Payne T,Clement J,Arnold D,et al. Heterologous myb genes distinct from GL1 enhance trichome production when overexpressed in Nicotiana tabacum[J]. Development,1999,126(4)∶ 671-682.
[26] Perez-Rodriguez M,Jaffe F W,Butelli E,et al. Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers[J]. Development,2005,132(2)∶ 359-370.
[27] Serna L. A network of interacting factors triggering different fates[J]. Plant Cell,2004,16(9)∶ 2258-2263.
[28] Wang Y P,Liu R X,Chen L,et al. Nicotiana tabacum TTG1 contributes to ParA1-induced signalling and cell death in leaf trichomes[J]. J Cell Sci,2009,122(Pt 15)∶2673-2685.
[29] Zhu Q,Li B Y,Mu S Y,et al. TTG2-regulated development is related to expression of putative AUXIN RESPONSE FACTOR genes in tobacco[J]. BMC Genomics,2013,14∶ 806.
[30] Yang C X,Li H X,Zhang J H,et al. A regulatory gene induces trichome formation and embryo lethality in tomato[J]. Proc Natl Acad Sci USA,2011,108(29)∶11836-11841.
[31] Yang C X,Gao Y N,Gao S H,et al. Transcriptome profile analysis of cell proliferation molecular processes during multicellular trichome formation induced by tomato Wov gene in tobacco[J]. BMC Genomics,2015,16(1)∶ 868.
[32] Cui H,Zhang S T,Yang H J,et al. Gene expression profile analysis of tobacco leaf trichomes[J]. BMC Plant Biol,2011,11∶ 76.
[33] Wang E,Wang R,DeParasis J,et al. Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance[J]. Nat Biotechnol,2001,19(4)∶ 371-374.
[34] Wang E,Wagner G J. Elucidation of the functions of genes central to diterpene metabolism in tobacco trichomes using posttranscriptional gene silencing[J]. Planta,2003,216(4)∶ 686-691.
[35] Ennajdaoui H,Vachon G,Giacalone C,et al. Trichome specific expression of the tobacco (Nicotiana sylvestris)cembratrien-ol synthase genes is controlled by both activating and repressing cis-regions[J]. Plant Mol Biol,2010,73(6)∶ 673-685.
[36] Peters R J. Two rings in them all∶ the labdane-related diterpenoids[J]. Nat Prod Rep,2010,27(11)∶ 1521-1530.
[37] Sallaud C,Giacalone C,Topfer R,et al. Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes[J]. Plant J,2012,72(1)∶1-17.
[38] Harada E,Kim J A,Meyer A J,et al. Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses[J]. Plant Cell Physiol,2010,51(10)∶ 1627-1637.
[39] Choi Y E,Lim S,Kim H J,et al. Tobacco NtLTP1,a glandular-specific lipid transfer protein,is required for lipid secretion from glandular trichomes[J]. Plant J,2012,70(3)∶ 480-491.
Advances in Molecular Mechanism of Tobacco Glandular Trichome Development
ZHANG Hongying,CUI Hong*
(College of Tobacco,Henan Agricultural University,Zhengzhou 450002,China)
Abstract:Tobacco (Nicotiana tabacum L.) is densely covered with various types of glandular trichomes,which secrete a wide range of natural products. Tobacco glandular trichomes play important roles in stress responses and aroma components. Recently,significant progress has been obtained about the molecular mechanism of tobacco glandular trichome development. The paper reviews the current research progress on the tobacco genes involved in trichome development and trichome secretion synthesis. It provided useful information for the molecular regulation of trichome secretions and variety improvement.
Keywords:tobacco;glandular trichome;development;secretion;gene
中图分类号:S572.03
文章编号:1007-5119(2016)01-0097-04
DOI:10.13496/j.issn.1007-5119.2016.01.017
基金项目:中国烟草总公司基因组重大专项项目[110201301005(JY-05),110201401003(JY-03)]
作者简介:张洪映(1982-),讲师,主要从事烟草腺毛分子调控研究。E-mail:zhangying198215@163.com*通信作者,E-mail∶ cuihonger_13@163.com
收稿日期:2016-02-23