孙 青,梁晓春
中国医学科学院 北京协和医学院 北京协和医院中医科,北京 100730
·综 述·
脂肪细胞因子与2型糖尿病β细胞衰竭关系的研究进展
孙 青,梁晓春
中国医学科学院 北京协和医学院 北京协和医院中医科,北京 100730
β细胞衰竭和胰岛素抵抗在2型糖尿病发病过程中发挥重要作用。循环中脂肪细胞因子的改变,可使肥胖、β细胞衰竭和胰岛素抵抗之间建立紧密联系。一部分脂肪细胞因子起有益作用,另一部分则是有害的,它们对于β细胞衰竭的贡献主要依赖于脂肪细胞因子间的相互作用。本文总结了瘦素、脂联素、抵抗素、内脏脂肪素等脂肪细胞因子在β细胞功能、增殖、死亡和衰竭中的作用,以期帮助今后对脂肪细胞因子与β细胞联合效应的深入研究,为2型糖尿病的治疗提供新的方向。
脂肪细胞因子;2型糖尿病;β细胞衰竭
ActaAcadMedSin,2016,38(5):601-606
胰岛β细胞衰竭和胰岛素抵抗被认为是2型糖尿病发生发展的重要因素[1]。在疾病早期阶段,胰岛β细胞可通过增加其数量和功能来中和胰岛素抵抗,使糖尿病诊断推迟数年[2],但最终β细胞经由糖毒性、脂毒性、内质网应激等多种途径导致胰岛素抵抗和高血糖[3]。因此,机体维持胰岛β细胞数量和功能的能力是预防2型糖尿病发病的关键。
过去认为胰岛和脂肪组织的关系像单行道,首先高血糖刺激胰岛分泌胰岛素,进而脂肪细胞通过与胰岛素受体结合和信号转导引起糖摄取增加,最终导致三酰甘油贮存增多;其次脂肪组织的胰岛素抵抗可引起β细胞衰竭[4]。近年研究发现,脂肪组织不仅是多余能量的贮存库,而且是活跃的内分泌器官[5]。脂肪组织释放的分子被称为脂肪因子或脂肪细胞因子,新发现的和现有的分子不断被证实是由脂肪组织分泌的,因此脂肪细胞因子的数量逐年增加。由于肥胖与2型糖尿病之间存在潜在的病理生理学联系[6],肥胖状态下肥大的脂肪细胞可引起脂肪细胞因子分泌失调,进而参与胰岛和脂肪组织间的相互作用,可能导致胰岛β细胞衰竭和2型糖尿病。
1994年,继肥胖基因被发现后,人们又发现了瘦素[7]。瘦素最初被认为是脂肪来源的激素类分子,后来发现是脂肪细胞因子。早期临床研究结果显示,循环中的瘦素水平可能与胰岛功能有关[8]。此后研究证实,瘦素能够显著抑制胰岛β细胞中葡萄糖刺激的胰岛素分泌(glucosestimulated insulin secretion,GSIS),降低前胰岛素原的基因表达[9]。Brown等[10- 11]研究发现,低浓度瘦素可抑制人胰岛模型的GSIS,高浓度瘦素则起刺激作用,成U型曲线,这与瘦素受体的细胞因子受体样性质和信号级联反应相符;此外瘦素可降低人胰岛中解耦联蛋白2(uncoupling protein 2,UCP2)的表达,上调β细胞系中B细胞淋巴瘤2(B-cell lymphoma 2,BCL2)/Bcl2相关X蛋白(Bcl2-associated X,BAX)的表达比例,从而减少细胞凋亡。然而近期研究显示,瘦素能增加活性氧介导的β细胞增殖,抑制GSIS,但对细胞凋亡没有影响[12]。此外,瘦素可活化蛋白和脂质磷酸酶:同源性磷酸酶-张力蛋白(phosphatase and tensin homolog,PTEN)及其下游通路,从而激活ATP依赖钾通道,使β细胞膜超极化,最终抑制GSIS,而在瘦素缺陷的2型糖尿病ob/ob小鼠中,PTEN基因的缺失可预防β细胞数量和功能缺陷[13- 14]。
脂联素是早期发现的脂肪细胞因子之一[15- 16],能够改善胰岛素敏感性和血管功能,具有抗糖尿病[17]和抗动脉粥样硬化的作用[18]。脂联素受体(adiponectin receptor,AdipoRs)表达广泛,AdipoR1和AdipoR2具有67%同源性,球状的脂联素(globular adiponectin,gADN)对AdipoR1有较高的亲和力,脂联素和AdipoRs间的相互作用可通过AMP依赖的蛋白激酶(AMP-activated protein kinase,AMPK)、过氧化物酶增殖体激活受体(peroxisome proliferator-activated receptor,PPAR)α和p38丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)等介导[19]。
脂联素对β细胞的存活和功能均有影响。原代培养[20]和克隆的β细胞[21- 22]上均表达AdipoRs,其中AdipoR1通常较高水平表达。饱和脂肪酸棕榈酸孵育NIT- 1大鼠β细胞系可下调AdipoR2表达,增加细胞凋亡;PPARα兴奋剂安妥明能延迟棕榈酸介导的AdipoR表达损伤;脂联素能够增加AMPK磷酸化,安妥明可进一步增加AMPK磷酸化,并部分逆转棕榈酸抑制GSIS的作用[23]。微流体芯片研究结果显示,间歇性高血糖较持续性高血糖更能导致INS- 1大鼠β细胞系凋亡和坏死、抑制GSIS、降低胰岛素水平和胰十二指肠同源异型盒基因(pancreatic and duodenal homeobox 1,PDX1)mRNA的表达,这些损害均可部分被脂联素逆转[24]。gADN和脂联素片段15- 36均能增加β细胞活性,上调细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)1/2磷酸化水平,其中脂联素片段15- 36的作用能被瘦素逆转;gADN可显著升高脂蛋白脂肪酶表达,轻微降低PDX1表达,脂联素片段15- 36无此作用;这两种片段均不影响胰岛素水平,不能抑制血清饥饿诱导的细胞凋亡[21]。Wijesekara等[22]研究结果显示,脂联素可增加MIN6细胞和小鼠胰岛组织ERK磷酸化,降低活化的半胱天冬酶(cysteinyl aspartate specific proteinase,caspase)- 3水平,提示其可抑制血清饥饿诱导的细胞凋亡。有学者发现,脂联素是通过与AdipoR1/R2结合活化神经酰胺酶,导致1- 磷酸鞘氨醇(sphingosine- 1-phosphate,S1P)的产生,AMPK是唯一的下游通路[15]。脂联素和瘦素可促进RIN和MIN6克隆β细胞系的增殖,但不影响细胞凋亡,这可能与抑制抗氧化酶如超氧化物歧化酶的表达、促进活性氧(active oxygen species,ROS)产生有关,与高浓度ROS相比,低浓度ROS在调节β细胞数量方面发挥生理作用;脂联素对胰岛素分泌则没有影响[12]。
无论是抑制β细胞凋亡还是促进增殖,高浓度脂联素的整体效应是维持β细胞数量,而低浓度脂联素对肥胖和2型糖尿病有贡献。脂联素与瘦素或其他脂肪细胞因子的比值将是整体评价肥胖时β细胞功能的重要因素。
肿瘤坏死因子(tumour necrosis factor α,TNFα)是一种促炎细胞因子,其在1型糖尿病免疫系统介导的β细胞死亡中的作用已得到确认;TNFα同时是一种脂肪细胞因子,在肥胖和胰岛素抵抗患者循环中高表达[25]。虽然有研究认为肥胖人群和动物中的TNFα升高尚未达到影响β细胞存活或功能的程度[26],但大多数观点则主张其在2型糖尿病发病中有更大贡献,与1型糖尿病类似,TNFα可通过激活核因子(nuclear factor,NF)-κB通路诱导β细胞凋亡[27- 28]。大量报道证实TNFα有直接抑制胰岛素分泌的作用[29],同时TNFα可诱导β细胞中胰淀素的产生,导致胰淀素与胰岛素的比值升高,胰淀素分泌相对增加[30]。因为胰淀素累积形成的淀粉样蛋白是2型糖尿病中β细胞损害的潜在因素[31],循环中胰淀素/胰岛素比值升高导致胰岛素抵抗,这预示着TNFα连接肥胖和2型糖尿病的另一可能机制,有待进一步研究。
抵抗素是在诱导脂肪细胞基因差别显示的过程中被发现的,能够显著诱导啮齿类动物的胰岛素抵抗,可被胰岛素敏感性PPARγ激动剂噻唑烷二酮类药物所抑制,是“糖尿病基因”的强有力候选者[32]。然而,在啮齿动物中观察到的结果目前尚未在人群中发现[33]。有研究发现,抵抗素能够下调β细胞系中胰岛素受体的表达,从而降低细胞活力;此外抵抗素可诱导胰岛中的胰岛素抵抗,抑制GSIS减少[11,34]。这些研究所用的胰岛和β细胞均是小鼠来源的,尚未在人类胰岛中得到复制,目前仅证实抵抗素在人类胰岛中有表达,且在2型糖尿病患者中表达上调[35- 36]。因此,虽然抵抗素是一种重要的细胞内蛋白,但其作为脂肪细胞因子调节人类胰岛β细胞数量和功能的具体机制仍需进一步研究。
内脏脂肪素(visfatin),即前B细胞集落增强因子(pre-B cell colony-enhancing factor,PBEF),是新近发现的一种脂肪细胞因子,实际上是一种由脂肪组织经由非经典途径分泌的磷酸核糖转移酶——尼克酰胺磷酸核糖转移酶(nicotinamide phosphoribosyltransferase,NAMPT)。最初研究发现,visfatin具有胰岛素模拟作用[37],随后证实其可通过脂肪细胞因子样通路促进胰岛素分泌[38- 39]。Visfatin不仅可直接促进β TC6细胞的胰岛素分泌,而且能够活化β细胞的胰岛素受体,上调其磷酸化表达[39]。此外,visfatin可增加MIN6 β细胞系的增殖,并通过ERK1/2和磷脂酰肌醇3-羟激酶(phosphatidyl inositol 3-kinase,PI3K)/蛋白激酶B(protein kinase B,PKB)途径抑制棕榈酸诱导的β细胞凋亡,提示visfatin对维持β细胞数量可能具有积极作用,具体作用机制尚未完全阐明,但可能涉及了尼克酰胺单核苷酸的产生,从而调节PDX1的表达,促进胰岛素转录[40- 41]。然而,visfatin对β细胞的整体效应是有益的还是有害尚需进一步确认,因为有证据显示较低浓度的生理水平visfatin对β细胞有益,而较高浓度的病理水平则可能有害[39]。
肠促胰岛素胰高血糖素样肽(glucagon-like peptide- 1,GLP- 1)不仅能刺激2/3的餐后胰岛素分泌,是β细胞功能的重要调控者;而且可促进胰岛β细胞增殖,正向调控β细胞数量[42- 43]。二肽激肽酶Ⅳ(dipeptidyl peptidase Ⅳ,DPP-Ⅳ)是一种能降解GLP- 1使其半衰期减至数分钟的肽酶,最近发现DPP-Ⅳ可由成熟的人原代脂肪细胞分泌[44],是一种新发现的脂肪细胞因子。临床研究证实,肥胖和胰岛素抵抗患者的内脏脂肪组织中可释放较多DPP-Ⅳ,推测其可作为内脏肥胖、胰岛素抵抗和代谢综合征的新靶标[45]。
Apelin也是一种新近发现的脂肪细胞因子,它在脂肪组织中广泛表达,对摄食行为和葡萄糖利用均有影响。Apelin受体—APJ受体在胰岛中表达,Apelin及其受体的活化可抑制高血糖刺激的β细胞胰岛素分泌,该作用是通过激活PI3K-磷酸二脂酶3B途径来实现的[46- 47];敲除高脂饮食小鼠胰岛中APJ受体基因可使胰岛大小、密度和细胞数量减少,导致胰岛素抵抗[48];而利用Apelin- 13治疗10周可显著增加糖尿病小鼠的胰岛细胞数量和胰岛素含量[49]。近年研究显示,Apelin自身也在胰岛中表达,特别是β和α细胞,推测其可能具有自分泌/旁分泌作用[50]。
多种脂肪细胞因子对β细胞的存活和功能均有影响,然而大部分研究局限于单独孤立的脂肪细胞因子,仅少数研究例外,如Brown等[21]报道了脂联素片段增加β细胞活性、激活ERK1/2通路的作用可被瘦素逆转。在肥胖个体中,β细胞暴露于多种不同浓度的脂肪细胞因子中,因此其作用的信号通路是相互交叉的,涉及了PI3K、AMPK、MAPK/ERK1/2和胰岛素受体等。代谢性疾病患者循环中脂肪细胞因子的浓度十分复杂、众说纷纭,有待进一步阐明,今后的研究应着眼于不同组合脂肪细胞因子对β细胞作用的比较,这更加符合生理(较瘦的个体)和病理(肥胖、糖尿病和/或血管疾病)状态。
综上,越来越多的激素和其他活性循环因子被证实由脂肪组织分泌,具有维持或破坏胰岛β细胞数量和功能的作用。现有证据证实,脂肪细胞因子可能是β细胞功能衰竭的重要因素,这些因子是否是糖尿病发生的诱因,是否通过影响糖尿病前期和2型糖尿病时为了代偿胰岛素抵抗导致β细胞功能减退的速度从而加速糖尿病进展等问题尚需进一步研究,有利于寻找2型糖尿病治疗的新靶点。
[1]Leahy JL,Hirsch IB,Peterson KA,et al. Targeting beta-cell function early in the course of therapy for type 2 diabetes mellitus[J]. J Clin Endocrinol Metab,2010,95(9):4206- 4216.
[2]Chang-Chen KJ,Mullur R,Bernal-Mizrachi E,et al. Beta-cell failure as a complication of diabetes[J]. Rev Endocr Metab Disord,2008,9(4):329- 343.
[3]Jonas JC,Bensellam M,Duprez J,et al. Glucose regulation of islet stress responses and beta-cell failure in type 2 diabetes[J]. Diabetes Obes Metab,2009,11(Suppl 4):65- 81.
[4]Weir GC,Laybutt DR,Kaneto H,et al. Beta-cell adaptation and decompensation during the progression of diabetes[J]. Diabetes,2001,50(Suppl 1):S154-S159.
[5]Deng Y,Scherer PE. Adipokines as novel biomarkers and regulators of the metabolic syndrome[J]. Ann N Y Acad Sci,2010,1212:E1-E19.
[6]Wellen KE,Hotamisligil GS. Inflammation,stress,and diabetes[J]. J Clin Invest,2005,115(5):1111- 1119.
[7]Zhang Y,Proenca R,Maffei M,et al. Positional cloning of the mouse obese gene and its human homologue[J].Nature,1994,372(6505):425- 432.
[8]Ahrénn B,Larsson H. Leptin-a regulator of islet function: its plasma levels correlate with glucagon and insulin secretion in healthy women[J]. Metabolism,1997,46(12):1477- 1481.
[9]Laubner K,Kieffer TJ,Lam NT,et al. Inhibition of preproinsulin gene expression by leptin induction of suppressor of cytokine signaling 3 in pancreatic beta-cells[J]. Diabetes,2005,54(12):3410- 3417.
[10]Brown JE,Thomas S,Digby JE,et al. Glucose induces and leptin decreases expression of uncoupling protein- 2 mRNA in human islets[J]. FEBS Lett,2002,513(2- 3):189- 192.
[11]Brown JE,Onyango DJ,Dunmore SJ. Resistin down-regulates insulin receptor expression,and modulates cell viability in rodent pancreatic beta-cells[J]. FEBS Lett,2007,581(17):3273- 3276.
[12]Chetboun M,Abitbol G,Rozenberg K,et al. Maintenance of redox state and pancreatic beta-cell function: role of leptin and adiponectin[J]. J Cell Biochem,2012,113(6):1966- 1976.
[13]Ning K,Miller LC,Laidlaw HA,et al. A novel leptin signalling pathway via PTEN inhibition in hypothalamic cell lines and pancreatic beta-cells[J]. EMBO J,2006,25(11):2377- 2387.
[14]Wang L,Liu Y,Yan Lu S,et al. Deletion of Pten in pancreatic β-cells protects against deficient β-cell mass and function in mouse models of type 2 diabetes[J].Diabetes,2010,59(12):3117- 3126.
[15]Scherer PE,Williams S,Fogliano M,et al. A novel serum protein similar to C1q,produced exclusively in adipocytes[J]. J Biol Chem,1995,270(45): 26746- 26749.
[16]Arita Y,Kihara S,Ouchi N,et al. Paradoxical decrease of an adipose-specific protein,adiponectin,in obesity[J]. Biochem Biophys Res Commun,1999,257(1):79- 83.
[17]Pajvani UB,Du X,Combs TP,et al. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications for metabolic regulation and bioactivity[J].J Biol Chem,2003,278(11):9073- 9085.
[18]Ouchi N,Kihara S,Arita Y,et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin[J]. Circulation,1999,100(25):2473- 2476.
[19]Kadowaki T,Yamauchi T. Adiponectin and adiponectin receptors[J]. Endocr Rev,2005,26(3):439- 451.
[20]Kharroubi I,Rasschaert J,Eizirik DL,et al. Expression of adiponectin receptors in pancreatic beta cells[J]. Biochem Biophys Res Commun,2003,312(4): 1118- 1122.
[21]Brown JE,Conner AC,Digby JE,et al. Regulation of beta-cell viability and gene expression by distinct agonist fragments of adiponectin[J]. Peptides,2010,31(5):944- 949.
[22]Wijesekara N,Krishnamurthy M,Bhattacharjee A,et al. Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic beta cell apoptosis and increases insulin gene expression and secretion[J]. J Biol Chem,2010,285(44): 33623- 33631.
[23]Jung TW,Lee MW,Lee YJ,et al. Regulation of adiponectin receptor 2 expression via PPAR-alpha in NIT- 1 cells[J]. Endocr J,2009,56(3):377- 382.
[24]Lin P,Chen L,Li D,et al. Adiponectin reduces glucotoxicity-induced apoptosis of INS- 1 rat insulin-secreting cells on a microfluidic chip[J]. Tohoku J Exp Med,2009,217(1):59- 65.
[25]Hotamisligil GS. Mechanisms of TNF-alpha-induced insulin resistance[J]. Exp Clin Endocrinol Diabetes,1999,107(2):119- 125.
[26]Zhao YF,Feng DD,Chen C. Contribution of adipocyte-derived factors to beta-cell dysfunction in diabetes[J]. Int J Biochem Cell Biol,2006,38(5- 6): 804- 819.
[27]Ortis F,Pirot P,Naamane N,et al. Induction of nuclear factor-kappaBand its downstream genes by TNF-alpha and IL- 1beta has a pro-apoptotic role in pancreatic beta cells[J]. Diabetologia,2008,51(7):1213- 1225.
[28]Ortis F,Miani M,Colli ML,et al. Differential usage of NF-κB activating signals by IL- 1β and TNF-α in pancreatic beta cells[J]. FEBS Lett,2012,586(7): 984- 989.
[29]Kim HE,Choi SE,Lee SJ,et al. Tumour necrosis factor-alpha-induced glucose-stimulated insulin secretion inhibition in INS- 1 cells is ascribed to a reduction of the glucose-stimulated Ca2+influx[J]. J Endocrinol,2008,198(3): 549- 560.
[30]Cai K,Qi D,Wang O,et al. TNF-alpha acutely upregulates amylin expression in murine pancreatic beta cells[J]. Diabetologia,2011,54(3):617- 626.
[31]Westermark P,Andersson A,Westermark GT. Islet amyloid polypeptide,islet amyloid,and diabetes mellitus[J]. Physiol Rev,2011,91(3):795- 826.
[32]Steppan CM,Bailey ST,Bhat S,et al. The hormone resistin links obesity to diabetes[J]. Nature,2001,409(6818): 307- 312.
[33]Nagaev I,Smith U. Insulin resistance and type 2 diabetes are not related to resistin expression in human fat cells or skeletal muscle[J]. Biochem Biophys Res Commun,2001,285(2):561- 564.
[34]Nakata M,Okada T,Ozawa K,et al. Resistin induces insulin resistance in pancreatic islets to impair glucose-induced insulin release[J]. Biochem Biophys Res Commun,2007,353(4):1046- 1051.
[35]Minn AH,Patterson NB,Pack S,et al. Resistin is expressed in pancreatic islets[J]. Biochem Biophys Res Commun,2003,310(2):641- 645.
[36]Al-Salam S,Rashed H,Adeghate E. Diabetes mellitus is associated with an increased expression of resistin in human pancreatic islet cells[J]. Islets,2011,3(5):246- 249.
[37]Fukuhara A,Matsuda M,Nishizawa M,et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin[J]. Science,2005,307(5708): 426- 430.
[38]Revollo JR,Körner A,Mills KF,et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme[J]. Cell Metab,2007,6(5):363- 375.
[39]Brown JE,Onyango DJ,Ramanjaneya M,et al. Visfatin regulates insulin secretion,insulin receptor signalling and mRNA expression of diabetes-related genes in mouse pancreatic beta-cells[J]. J Mol Endocrinol,2010,44(3):171- 178.
[40]Cheng Q,Dong W,Qian L,et al. Visfatin inhibits apoptosis of pancreatic β-cell line,MIN6,via the mitogen-activated protein kinase/phosphoinositide 3-kinase pathway[J]. J Mol Endocrinol,2011,47(1):13- 21.
[41]盛飞凤,任贤,戴幸平,等.烟酰胺单核苷酸对RIN-m5f细胞中胰岛素分泌及PDX- 1和FoxO1基因表达的影响[J].中南大学学报:医学版,2011,36(10):958- 963.
[42]Kazafeos K. Incretin effect: GLP- 1,GIP,DPP4[J]. Diabetes Res Clin Pract,2011,93 (Suppl 1):S32-S36.
[43]Buteau J. GLP- 1 receptor signaling: effects on pancreatic beta-cell proliferation and survival[J]. Diabetes Metab,2008,34 (Suppl 2):S73-S77.
[44]Lamers D,Famulla S,Wronkowitz N,et al. Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome[J]. Diabetes,2011,60(7):1917- 1925.
[45]Sell H,Blüher M,Klöting N,et al. Adipose dipeptidyl peptidase- 4 and obesity: correlation with insulin resistance and depot-specific release from adipose tissueinvivoandinvitro[J]. Diabetes Care,2013,36(12):4083- 4090.
[46]Sörhede Winzell M,Magnusson C,Ahrén B. The apj receptor is expressed in pancreatic islets and its ligand,apelin,inhibits insulin secretion in mice[J]. Regul Pept,2005,131(1- 3):12- 17.
[47]Guo L,Li Q,Wang W,et al. Apelin inhibits insulin secretion in pancreatic beta-cells by activation of PI3-kinase-phosphodiesterase 3B[J]. Endocr Res,2009,34(4):142- 154.
[48]Han S,Englander EW,Gomez GA,et al. Pancreatic islet APJ deletion reduces islet density and glucose tolerance in mice[J]. Endocrinology,2015,156(7): 2451- 2460.
[49]Chen H,Zheng C,Zhang X,et al. Apelin alleviates diabetes-associated endoplasmic reticulum stress in the pancreas of Akita mice[J].Peptides,2011,32(8):1634- 1639.
[50]Ringström C,Nitert MD,Bennet H,et al. Apelin is a novel islet peptide[J]. Regul Pept,2010,162(1- 3):44- 51.
Advances in the Relationship between Adipokines and β-cell Failure in Type 2 Diabetes Mellitus
SUN Qing,LIANG Xiao-chun
Department of Traditional Chinese Medicine,PUMC Hospital,CAMS and PUMC,Beijing 100730,China
LIANG Xiao-chun Tel: 010- 69155331,E-mail: xcliang@vip.sina.com
β-cell failure coupled with insulin resistance plays a key role in the development of type 2 diabetes mellitus (T2DM). Changed adipokines in circulating level form a remarkable link between obesity and both β-cell failure and insulin resistance. Some adipokines have beneficial effects,whereas others have detrimental properties. The overall contribution of adipokines to β-cell failure mainly depends on the interactions among adipokines. This article reviews the role of individual adipokines such as leptin,adiponectin,and resistin in the function,proliferation,death,and failure of β-cells. Future studies focusing on the combined effects of adipokines on β-cells failure may provide new insights in the treatment of T2DM.
adipokines; type 2 diabetes mellitus; β-cell failure
北京协和医院中青年科研基金(pumch- 2013- 140)Supported by the Youth Science Foundation of Peking Union Medical College Hospital(pumch- 2013- 140)
梁晓春 电话:010- 69155331,电子邮件:xcliang@vip.sina.com
R587.1
A
1000- 503X(2016)05- 0601- 06
10.3881/j.issn.1000- 503X.2016.05.020
2015- 09- 06)