PM2.5对胰岛素抵抗的影响及机制研究进展

2016-01-30 00:10李灵欢姚元发李汉兵
中国药理学与毒理学杂志 2016年11期
关键词:酪氨酸脂肪组织磷酸化

李灵欢,姚元发,李汉兵

(浙江工业大学药学院药理学科,浙江杭州 310014)

PM2.5对胰岛素抵抗的影响及机制研究进展

李灵欢,姚元发,李汉兵

(浙江工业大学药学院药理学科,浙江杭州 310014)

大量的实验研究和流行病学调查结果显示,被人体吸入的颗粒物PM2.5不但能引起炎症,而且会增强机体的胰岛素抵抗(IR),诱发和加重糖尿病。PM2.5诱发和加重IR的分子机制涉及内皮功能紊乱、炎症因子、内质网应激和线粒体应激等,从而引起细胞的生理功能发生变化。本文综述了PM2.5对IR影响的最新研究成果,特别是对机制的研究。

PM2.5;胰岛素抵抗;糖尿病

随着生活水平的提高和生活方式的变化,糖尿病的发病率呈逐年上升的趋势,严重危害人类的健康。据统计,2014年患糖尿病人数达4.22亿,约占全球总人口的8.5%[1]。在糖尿病患者中,>90%的患者属于2型糖尿病(type 2 diabetes mellitus,T2DM),而大量的流行病学研究显示胰岛素抵抗(insulin resistance,IR)伴随T2DM的发生和发展[2]。在近几十年里,工业化带来的危害也越来越明显,特别是在大气污染方面,严重影响了人们的身心健康。据世界卫生组织统计,2012年大约有700万人死于空气污染,占全球因环境引起死亡人数的1/8[3],>90%糖尿病患者是由于环境和生活习惯因素引起的[4]。在环境危害中,空气污染的危害最广,其中大气污染物中的颗粒物对人体损伤最大,尤其是PM2.5。长期吸入PM2.5会引起人体大范围炎症反应及氧化应激,从而诱发心血管和代谢性疾病[5]。本文主要综述了PM2.5对IR的影响及相关机制。

1 PM2.5的定义及概况

空气中的颗粒污染物按空气动力学粒径不同可分为粗颗粒(2.5~10 μm,PM10)、细颗粒(0.1~2.5 μm,PM2.5)及超细颗粒(<0.1 μm)3类[6]。它们是一类复杂的混合物,由固态和液态的有机物以及无机物组成。颗粒物的主要成分有硫酸盐、硝酸盐、氨化物、氯化钠、碳、矿尘和水[3]。目前>3/4的人生活在PM2.5超出世界卫生组织空气质量标准的地区[7]。近年来我国出现了大范围的雾霾天气,2013年吕效谱等[8]挑选了我国8个重点城市,以大气中PM2.5浓度和粒径分布等作为研究对象,进行深入的分析。分析结果显示,PM2.5平均超标2.34倍,其中河北省石家庄市污染最为严重,PM2.5/PM10比值平均为0.72,北京地区高达0.98。主要成分及相关性分析发现,在该雾霾形成中,机动车产生的尾气污染是主要原因。

2 胰岛素信号通路与胰岛素抵抗

胰岛素信号通路主要包括胰岛素受体(insulin receptor,InsR)与胰岛素结合并自身磷酸化,磷酸化的InsR具有酪氨酸激酶活性,可使胰岛素受体底物(insulin receptor substrate,IRS)的酪氨酸磷酸化。酪氨酸磷酸化的IRS能激活磷脂酰肌醇3激酶(phosphoinositide 3-kinase,PI3K)。活化的PI3K使细胞膜上的磷脂酰肌醇-4,5-二磷酸磷酸化变成磷脂酰肌醇-3,4,5-三磷酸(phosphatidyl inositol 3,4,5-trisphosphate,PIP3)。然后分别激活以下2条信号通路:①磷脂酰肌醇依赖蛋白激酶活化与PIP3结合的蛋白激酶B(protein kinase B,PKB/ AKT),活化的AKT使葡萄糖转运蛋白4(glucose transporter 4,GLUT4)囊泡表面的AKT底物160 ku蛋白磷酸化,使AKT底物160 ku蛋白失去GTP酶活性,从而使Rab蛋白被GTP活化,作用于下游效应物。最后活化肌动蛋白和招募囊泡胞吐复合物,使GLUT4储存囊泡由细胞内移动到细胞膜上,完成GLUT4转位[9-10]。②PIP3还可活化非典型蛋白激酶Cλ和ζ,活化蛋白激酶Cλ和ζ直接调节GLUT4转位,促进葡萄糖摄取[11-12]。

IR是指正常剂量的胰岛素产生的生物学效应低于正常范围的现象,机体代偿性地分泌更多的胰岛素,以维持血糖平衡。IR通常会引起多种代谢性紊乱的疾病,统称代谢综合征。IR主要是由于InsR/IRS1/PI3K/AKT/GLUT4等信传号出现障碍,导致骨骼肌、肝和脂肪等靶胰岛素敏感组织对胰岛素介导的葡萄糖摄取及利用下降[13-14];IR也发生在内皮等组织。

3 PM2.5对胰岛素抵抗的影响及机制

目前大量实验和流行病学研究表明,PM2.5会诱导氧化应激和炎症反应,导致葡萄糖代谢紊乱和IR,诱发和加重T2DM[15-17]。Brook等[17-18]对美国密歇根州的25名健康非吸烟人员进行5 d PM2.5暴露,发现空腹血糖、胰岛素和体内平稳态模式评估-IR(homeostasis mode assessment-IR,HOMA-IR)升高,及对北京地区248名受试者进行实验,发现受试者HOMA-IR显著提高。Yan等[19]发现,高脂饮食的大鼠进行PM2.5悬浮液支气管滴注后,HOMA-IR明显提高。但PM2.5导致IR的相关机制仍不明确,目前报道的主要机制如下。

3.1 内皮功能紊乱

内皮能释放血管活性分子,参与心血管活动调节和维持机体内环境稳态。空气中颗粒污染物会介导内皮功能紊乱,导致外周组织葡萄糖摄取减少[20]。Sun等[21]发现,当人和动物长期暴露在PM2.5环境中,内皮细胞PI3K-AKT-一氧化氮合酶(nitric oxide synthase,NOS)信号通路出现障碍,使内皮功能发生改变,导致NO产生减少,降低了NO扩血管作用,从而可能引起IR。Haberzettl等[22]报道,小鼠短期吸入PM2.5会引起肺氧化应激,减少血管内皮NOS磷酸化,先导致内皮IR,再导致骨骼肌、肝和脂肪组织等IR。Sun等[23]研究结果表明,吸入PM2.5对主动脉和肝胰岛素信号通路造成一定影响。PM2.5对主动脉的损伤是由于内皮细胞AKT磷酸化水平变化造成的,同时也研究了在胰岛素刺激下小鼠PM2.5吸入时长与AKT磷酸化水平的关系,发现当吸入空气中PM2.530 min后,就可使AKT磷酸化水平下降,导致胰岛素信号异常。他们还发现随着PM2.5的吸入,人体主动脉中PKC βⅡ表达量也会随之增多,同时抗胰岛素受体底物1也增加,表明PKC βⅡ可能与IR相关。

3.2 炎症因子

Brook等[18]报道,只需短期吸入低浓度PM2.5即可降低健康人的胰岛素敏感程度。Thiering等[24]对长期生活在高浓度污染物环境中的儿童进行HOMA-IR分析,发现他们HOMA-IR显著性提高。Sun等[23]发现,将小鼠饲养在高浓度PM2.5环境中24周,糖耐量明显降低。Rajagopalan等[25]报道,长期生存在PM2.5环境中,人体的肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、C-反应蛋白(C-reactive protein,CRP)、白细胞介素6(inter⁃leukin-6,IL-6)、瘦素和抵抗素水平升高。TNF-α能使人体胰岛素信号转导发生障碍,导致IR。Gupta等[26]报道了TNF-α可使InsR的β亚基受胰岛素刺激的酪氨酸磷酸化减弱,降低InsR活性,从而抑制与下游底物结合。TNF-α也可以先活化c-Jun氨基末端激酶(c-Jun NH2-terminal kinase,JNK),再使IRS1的307位丝氨酸磷酸化,或直接使IRS1的307位或612位丝氨酸磷酸化,抑制酪氨酸磷酸化,使IRS1的活性降低,以及降低IR,IRS1和GLUT4基因表达[27]。TNF-α还可通过诱导脂肪细胞iNOS表达,使IRS1与PI3K结合,并活化p85和p110亚基,但无法激活其下游底物[28]。以上这几种途径均会减少GLUT4转位,抑制细胞对葡萄糖的摄取,导致IR。

Wang等[29]发现,炎症因子CRP和IL-6可能通过IR引起糖尿病。CRP水平升高糖尿病患病率会增加26%,IL-6水平升高糖尿病患病率会增加31%。CRP是全身炎症反应重要生物标志物,它可激活处于非活性状态的NF-κB,激活的NF-κB可诱导IR[30],NF-κB还可加重炎症反应,促使细胞内炎性因子表达,最后由炎症因子作用于IRS1和IRS2,使胰岛素信号转导障碍,导致IR[31]。Kim等[32]报道,PM2.5中的脂溶性物质可活化NF-κB和活化蛋白1(activator protein-1,AP-1)影响胰岛素信号通路。Zheng等[33]发现,PM2.5通过激活JNK-AP-1、NF-κB和Toll样受体4引起肝炎,并发现肝、骨骼肌和脂肪组织中IRS1的636位和1101位丝氨酸磷酸化水平升高,阻碍了IRS1-AKT信号通路,可能是导致IR的关键因素。

IL-6是趋化因子家族中的一种细胞因子,可由多种细胞分泌。研究发现吸入12.1 μg·m-3的PM2.5小鼠5 d后,IL-6基因表达量明显提高,用PM2.52.5 mg·kg-1悬浮液支气管滴注大鼠24 h后,IL-6水平就会显著提高[34-35]。Senn等[36]在正常胰岛素水平和高IL-6水平的状态下培养原代肝细胞和HepG2细胞系,显示IL-6能使IRS1酪氨酸磷酸化水平降低,以及降低PI3K的p85亚基与IRS1的结合率,抑制胰岛素信号转导,导致IR。IL-6可抑制胰岛素信号通路中IRS1和GLUT4等相关基因的转录活动和表达[27]。在肝中,IL-6可以通过活化信号传导与转录激活因子3,激活细胞因子信号转导抑制因子3(suppressor of cytokine signaling-3,SOCS-3)。SOCS-3能与InsR 960位酪氨酸结合,抑制InsR与IRS1或IRS2结合,从而阻断下游信号通路,诱导肝IR[37-38]。

瘦素、脂联素和抵抗素是脂肪细胞分泌的重要因子。Liu等[39]发现,KKAy小鼠吸入PM2.5后,瘦素水平升高和脂联素水平降低,引起脂肪组织功能紊乱,可能与IR有关。PM2.5吸入后会诱导脂肪组织体积减少,细胞对胰岛素敏感度下调,导致IR[20,40]。Steppan等[41]发现,抵抗素虽对IRS1绝对水平无影响,但能诱导SOCS-3基因表达,表达的SOCS-3蛋白能与InsR酪氨酸残基结合,使其酪氨酸磷酸化水平约降低40%,IRS1磷酸化水平约降低40%,IRS1与下游PI3K结合能力约下降50%,AKT活化约减少40%,导致IR。Liu等[42]发现,PM2.5吸入小鼠的IRS水平无变化,但其酪氨酸磷酸化水平下降,使PI3K-AKT通路受抑制,导致IR。结合这2项研究说明,PM2.5可能通过抵抗素诱导SOCS-3基因表达导致IR。Liu等[43]用抵抗素培养大鼠肝癌细胞实验发现IRS1,IRS2及AKT蛋白表达水平和磷酸化水平都明显降低,表明抵抗素会抑制IRS-PI3K-AKT信号传导。Benomar等[44]报道,抵抗素影响IRS1的307位丝氨酸被磷酸化,导致IR。抵抗素可能通过抑制GLUT4基因表达及蛋白活性,从而减少葡萄糖的摄取,导致IR[45]。近年来发现,抵抗素还有可能作用于Toll样受体4[44,46],给PM2.5导致IR提供了新的可能机制。

还有其他炎症因素引起IR,但具体机制不明确。PM2.5会引起人体肝的炎症反应,胰岛素信号紊乱,并抑制过氧化物酶体增殖体激活受体α和γ,促进肝糖原分解,间接导致IR[33]。Xu等[47]对长期暴露在PM2.5环境中的人群进行研究,发现PM2.5不会导致全身性的炎症,但会引起局部组织器官炎症,导致肺部、内脏脂肪组织和系统性的IR,主要由于在肝、骨骼肌和脂肪组织胰岛素通路中AKT的473位丝氨酸磷酸化降低,使胰岛素信号通路障碍。Liu等[48]发现,PM2.5环境中普通小鼠,肝IRS1的612位酪氨酸和AKT的473位丝氨酸磷酸化降低,但在CCR2-/-小鼠中却无变化,表明CCR2通路在IR过程中发挥了重要作用。Xu等[35]报道,吸入PM2.5小鼠在第5天,肺脂肪组织中巨噬细胞数量发生了明显变化,在第21天,巨噬细胞浸润附睾脂肪组织达到峰值。因此认为,巨噬细胞可能是脂肪组织炎症反应和IR的重要介质。Rao等[49]报道,PM2.5可能通过活化IκB激酶β(IκB kinase β,IKKβ)引起中枢神经炎症,导致IR。

3.3 内质网应激

内质网应激也被称为未折叠或错误折叠蛋白质应答。长期吸入PM2.5可导致内质网应激和选择性激活错误折叠蛋白质应答信号通路,尤其肺和肝[50-51]。长期生活在PM2.5条件下,会引起内质网应激,导致肝中活化的肌醇需求激酶1α增加,活化的肌醇需求激酶1α可以磷酸化和活化JNK,从而抑制胰岛素信号通路,降低了外周组织对胰岛素的敏感程度,导致IR[50,52-53]。Laing等[50]长期对小鼠实验发现,PM2.5可引起内质网应激,并触发活化转录因子4和内质网源性转录因子表达。在内质网应激条件下,活化转录因子4能使LIPIN2基因过度转录,从而使PKC ε活化。活化的PKCε使InsR信号级联受阻,导致IR[54-55]。PM2.5可引起内质网应激,也会诱导NF-κB氧化应激通路,可能影响糖脂代谢,导致IR[42]。Sørensen等[56]报道,吸入PM2.5后,PM2.5中的活性物质会对体内的蛋白质和脂肪进行氧化。因此,Thiering等[24]认为,PM2.5引起的氧化应激可能是导致IR的主要原因。

3.4 线粒体应激

据报道,长达10个月的PM2.5吸入会使内脏脂肪组织的线粒体数目和肩胛间的线粒体体积减少及功能损伤,可导致IR[47,57]。线粒体功能损伤后产生过多的活性氧簇(reactive oxygen species,ROS)可活化各种丝氨酸/苏氨酸激酶,它们可使IRS磷酸化,导致IR。此外,ROS可通过活化IKKβ,激活促炎因子和炎症因子,使IRS1丝氨酸磷酸化,进一步加剧IR[31]。Liu等[58]发现,使用IKKβ抑制剂可能有助于改善IR。PM2.5暴露会使脂肪组织解偶联蛋白1(uncoupling protein-1,UCP1)表达下调,引起线粒体功能障碍[47]。Xu等[59]发现,吸入含镍量较高的PM2.5小鼠与吸入普通PM2.5小鼠相比,棕色脂肪组织UCP1表达量明显降低,胰岛素敏感度显著降低。这表明PM2.5可能通过镍降低UCP1表达,使线粒体功能障碍,导致IR。线粒体功能损伤会导致线粒体对脂质代谢能力降低,使代谢物甘油二酯累积。在骨骼肌和肝中,细胞内积累的甘油二酯可变构激活PKC,激活的PKC可使IRS1的丝氨酸/苏氨酸位点磷酸化,抑制IRS1酪氨酸磷酸化,减少了IRS1与InsR结合,使下游的胰岛素信号受阻,引起骨骼肌和肝IR[60]。在肝细胞中,线粒体功能损伤会产生过多的ROS,而后者可活化凋亡信号调节激酶1,活化后的凋亡信号调节激酶1可激活JNK,再由活化的JNK使IRS1的丝氨酸磷酸化,并抑制酪氨酸磷酸化,引起IR[61]。孕妇长期暴露在PM2.5环境中,会引起其和新生儿的线粒体内的DNA损伤[62]。

4 总结与展望

PM2.5会诱发和加重糖尿病,该过程与IR有着密切的联系,但具体机制仍不明确。PM2.5引发IR主要机制包括内皮功能紊乱、炎症因子、内质网应激和线粒体应激。目前虽有很多研究项目聚焦PM2.5与IR,但研究也存在诸多困难和问题。如:①相关的文章未明确给出该研究所用PM2.5的组成成分和来源,尽管可能都用采集的空气作为研究样品;②不能排除平行实验中其他颗粒物的干扰及PM2.5评估系统误差;③也有肥胖、生活境况、教育背景和地理环境等其他因素改变研究对象的敏感度;④无法确保HOMA-IR的敏感度[3,18];⑤PM2.5影响的范围较广,所涉及的生理改变较多,无法对某单一因素进行完整的阐述。因此,希望通过完善对该机制深入研究中的不足,为应对新环境下糖尿病防治提供理论基础和有效的预防措施,降低糖尿病发生率。有研究表明,在日常饮食中摄入适量的亚硝酸盐,可促进GLUT4囊泡转运,有助于改善IR[63]。Boonloh等[64]发现,米糠蛋白水解物有助于改善大鼠IR和减少促炎因子的表达。除了饮食改善,还要加强体育锻炼,这样有助于线粒体的生物合成,促进对ATP的利用,减少ROS的生成,改善线粒体功能,从而改善IR。

[1]Collaboration NRF.Worldwide trends in diabetes since 1980:a pooled analysis of 751 populationbased studies with 4.4 million participants[J].Lancet,2016,387(10027):1513-1530.

[2]Festa A,Hanley AJ,Tracy RP,D′agostino R,Haffner SM.Inflammation in the prediabetic state is related to increased insulin resistance rather than decreased insulin secretion[J].Circulation,2003,108(15):1822-1830.

[3]Esposito K,Petrizzo M,Maiorino MI,Bellastella G,Giugliano D.Particulate matter pollutants and risk of type 2 diabetes:a time for concern?[J].Endo⁃crine,2016,51(1):32-37.

[4]Bhatnagar A.Could dirty air cause diabetes?[J].Circulation,2009,119(4):492-494.

[5]Kampfrath T,Maiseyeu A,Ying Z,Shah Z,Deiuliis JA,Xu X,et al.Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways[J].Circ Res,2011,108(6):716-726.

[6]Donaldson K,Stone V,Clouter A,Renwick L,MacNee W.Ultrafine particles[J].Occup Environ Med,2001,58(3):211-216.

[7]Van Donkelaar A,Martin RV,Brauer M,Boys BL. Use of satellite observations for long-term expo⁃sure assessment of global concentrations of fine particulate matter[J].Environ Health Perspect,2015,123(2):135-143.

[8]Lv XP,Cheng HR,Wang ZW,Zhang F.Analysis of a wide range haze pollution in China[J].J Hunan Univ Sci&Tech:Nat Sci Edit(湖南科技大学学报:自然科学版),2013,28(3):104-110.

[9]Sakamoto K,Holman GD.Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic[J].Am J Physiol Endocrinol Metab,2008,295(1):E29-E37.

[10]Tan SX, Ng Y, Burchfield JG, Ramm G,Lambright DG,Stöckli J,et al.The Rab GTPaseactivating protein TBC1D4/AS160 contains an atyp⁃ical phosphotyrosine-binding domain that interacts with plasma membrane phospholipids to facilitate GLUT4 trafficking in adipocytes[J].Mol Cell Biol,2012,32(24):4946-4959.

[11]Choi K,Kim YB.Molecular mechanism of insulin resistance in obesity and type 2 diabetes[J].Korean J Intern Med,2010,25(2):119-129.

[12]Farese RV,Sajan MP,Yang H,Li P,Mastorides S,Gower WR,et al.Muscle-specific knockout of PKC-lambda impairs glucose transport and induces metabolic and diabetic syndromes[J].JClin Invest,2007,117(8):2289-2301.

[13]Dzamko N,Van Denderen BJ,Hevener AL,Jørgensen SB,Honeyman J,Galic S,et al. AMPK beta1 deletion reduces appetite,preventing obesity and hepatic insulin resistance[J].J Biol Chem,2010,285(1):115-122.

[14]Goustin AS,Abou-Samra AB.The“thrifty”gene encoding Ahsg/Fetuin-A meets the insulin receptor:insights into the mechanism of insulin resistance[J].Cell Signal,2011,23(6):980-990.

[15]Park SK,Wang W.Ambient air pollution and type 2 diabetes:a systematic review of epidemiologic research[J].Curr Environ Health Rep,2014,1(3):275-286.

[16]Meo SA,Memon AN,Sheikh SA,Rouq FA,Usmani AM,Hassan A,et al.Effect of environ⁃mental air pollution on type 2 diabetes mellitus[J].Eur Rev Med Pharmacol Sci,2015,19(1):123-128.

[17]Brook RD,Sun Z,Brook JR,Zhao X,Ruan Y,Yan J,et al.Extreme air pollution conditions adversely affect blood pressure and insulin resis⁃tance:the air pollution and cardiometabolic dis⁃ease study[J].Hypertension,2016,67(1):77-85.

[18]Brook RD,Xu X,Bard RL,Dvonch JT,Morishita M,Kaciroti N,et al.Reduced metabolic insulin sensitivity following sub-acute exposures to low levels of ambient fine particulate matter air pollution[J].Sci Total Environ,2013,448:66-71.

[19]Yan YH,Chou CC,Lee CT,Liu JY,Cheng TJ. Enhanced insulin resistance in diet-induced obese rats exposed to fine particles by instillation[J].Inhal Toxicol,2011,23(9):507-519.

[20]Balti EV,Echouffo-Tcheugui JB,Yako YY,Kengne AP. Air pollution and risk of type 2 diabetes mellitus:a systematic review and meta-analysis[J].Diabetes Res Clin Pract,2014,106(2):161-172.

[21]Sun Q,Wang A,Jin X,Natanzon A,Duquaine D,Brook RD,et al.Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model[J].JAMA,2005,294(23):3003-3010.

[22]Haberzettl P,O′Toole TE,Bhatnagar A,Conklin DJ. Exposure to fine particulate air pollution causes vascular insulin resistance by inducing pulmonary oxidative stress[J/OL].Environ Health Perspect,2016,(2016-06-12)[2016-04-29]http://dx.doi. org/10.1289/EHP212.

[23]Sun Q,Yue P,Deiuliis JA,Lumeng CN,Kamp⁃frath T,Mikolaj MB,et al.Ambient air pollution exaggerates dipose inflammation and insulin resistance in a mouse model of diet-induced obesity[J].Circulation,2009,119(4):538-546.

[24] Thiering E,Cyrys J,Kratzsch J,Meisinger C,Hoffmann B,Berdel D,et al.Long-term exposure to traffic-related air pollution and insulin resistance in children:results from the GINIplus and LISAplus birth cohorts[J].Diabetologia,2013,56(8):1696-1704.

[25]Rajagopalan S,Brook RD.Air pollution and type 2 diabetes:mechanistic insights[J].Diabetes,2012,61(12):3037-3045.

[26]Gupta D,Varma S,Khandelwal RL.Long-term effects of tumor necrosis factor-alpha treatment on insulin signaling pathway in HepG2 cells and HepG2 cells overexpressing constitutively active Akt/PKB[J].J Cell Biochem,2007,100(3):593-607.

[27]Rotter V,Nagaev I,Smith U.Interleukin-6(IL-6)induces insulin resistance in 3T3-L1 adipocytes and is,like IL-8 and tumor necrosis factor-alpha,overexpressed in human fat cells from insulin-resis⁃tant subjects[J].J Biol Chem,2003,278(46):45777-45784.

[28]Perreault M,Marette A.Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle[J].Nat Med,2001,7(10):1138-1143.

[29]Wang X,Bao W,Liu J,Ouyang YY,Wang D,Rong S,et al.Inflammatory markers and risk of type 2 diabetes:a systematic review and metaanalysis[J].Diabetes Care,2013,36(1):166-175.

[30]Yuan M,Konstantopoulos N,Lee J,Hansen L,Li ZW,Karin M,et al.Reversal of obesity-and dietinduced insulin resistance with salicylates or targeted disruption of IKKbeta[J].Science,2001,293(5535):1673-1677.

[31]Baker RG,Hayden MS,Ghosh S.NF-κB,inflam⁃mation,and metabolic disease[J].Cell Metab,2011,13(1):11-22.

[32]Kim JH,Hong YC.GSTM1,GSTT1,and GSTP1 polymorphisms and associations between air pol⁃lutants and markers of insulin resistance in elderly Koreans[J].Environ Health Perspect,2012,120(10):1378-1384.

[33]Zheng Z,Xu X,Zhang X,Wang A,Zhang C,Hüttemann M,et al.Exposure to ambient particu⁃late matter induces a NASH-like phenotype and impairs hepatic glucose metabolism in an animal model[J].J Hepatol,2013,58(1):148-154.

[34]Park EJ,Roh J,Kim Y,Park K,Kim DS,Yu SD. PM2.5collected in a residential area induced Th1-type inflammatory responses with oxidative stress in mice[J].Environ Res,2011,111(3):348-355.

[35] Xu X,Jiang SY,Wang TY,Bai Y,Zhong M,Wang A,et al.Inflammatory response to fine particulate air pollution exposure:neutrophilversusmonocyte[J].PLoS One,2013,8(8):e71414.

[36]Senn JJ,Klover PJ,Nowak IA,Mooney RA.Interleukin-6 induces cellular insulin resistance in hepa⁃tocytes[J].Diabetes,2002,51(12):3391-3399.

[37]Ueki K,Kondo T,Kahn CR.Suppressor of cyto⁃kine signaling 1(SOCS-1)and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate pro⁃teins by discrete mechanisms[J].Mol Cell Biol,2004,24(12):5434-5446.

[38]De Filippo G,Rendina D,Moccia F,Rocco V,Campanozzi A.Interleukin-6,soluble interleukin-6 receptor/interleukin-6 complex and insulin resis⁃tance in obese children and adolescents[J].J Endocrinol Invest,2015,38(3):339-343.

[39]Liu C,Bai Y,Xu X,Sun L,Wang A,Wang TY,et al.Exaggerated effects of particulate matter air pollution in genetic typeⅡ diabetes mellitus[J].Part Fibre Toxicol,2014,11(1):27.

[40]Sun L,Liu C,Xu X,Ying Z,Maiseyeu A,Wang A,et al.Ambient fine particulate matter and ozone exposures induce inflammation in epicardial and perirenal adipose tissues in rats fed a high fructose diet[J].Part Fibre Toxicol,2013,10(1):43.

[41]Steppan CM,Wang J,Whiteman EL,Birnbaum MJ,Lazar MA.Activation of SOCS-3 by resistin[J].Mol Cell Biol,2005,25(4):1569-1575.

[42]Liu C,Ying Z,Harkema J,Sun Q,Rajagopalan S. Epidemiological and experimental links between air pollution and type 2 diabetes[J].Toxicol Pathol,2013,41(2):361-373.

[43]Liu F,Yang T,Wang B,Zhang M,Gu N,Qiu J,et al.Resistin induces insulin resistance,but does not affect glucose output in rat-derived hepatocytes[J].Acta Pharmacol Sin,2008,29(1):98-104.

[44]Benomar Y,Gertler A,De Lacy P,Crépin D,Ould Hamouda H,Riffault L,et al.Central resistin overexposure induces insulin resistance through Toll-like receptor 4[J].Diabetes,2013,62(1):102-114.

[45]Sheng CH,Du ZW,Song Y,Wu XD,Zhang YC,Wu M,et al.Human resistin inhibits myogenic differentiation and induces insulin resistance in myocytes[J].Biomed Res Int,2013:804632.

[46]Jiang Y,Lu L,Hu Y,Li Q,An C,Yu X,et al. Resistin induces hypertension and insulin resis⁃tance in mice via a TLR4-dependent pathway[J].Sci Rep,2016,6:22193.

[47]Xu X,Liu C,Xu Z,Tzan K,Zhong M,Wang A,et al.Long-term exposure to ambient fine particu⁃late pollution induces insulin resistance and mito chondrial alteration in adipose tissue[J].ToxicolSci,2011,124(1):88-98.

[48]Liu C,Xu X,Bai Y,Wang TY,Rao X,Wang A,et al.Air pollution-mediated susceptibility to inflam⁃mation and insulin resistance:influence of CCR2 pathways in mice[J].Environ Health Perspect,2014,122(1):17-26.

[49]Rao X,Montresor-Lopez J,Puett R,Rajagopalan S,Brook RD.Ambient air pollution:an emerging risk factor for diabetes mellitus[J].Curr Diab Rep,2015,15(6):603.

[50]Laing S,Wang G,Briazova T,Zhang C,Wang A,Zheng Z,et al.Airborne particulate matter selec⁃tively activates endoplasmic reticulum stress response in the lung and liver tissues[J].Am J Physiol Cell Physiol,2010,299(4):C736-C749.

[51]Velasco G.Endoplasmic reticulum stressed by pol⁃lution.Focus on″airborne particulate matter selec⁃tively activates endoplasmic reticulum stress response in the lung and liver tissues″[J].Am J Physiol Cell Physiol,2010,299(4):C727-C728.

[52]Mendez R,Zheng Z,Fan Z,Rajagopalan S,Sun Q,Zhang K.Exposure to fine airborne particulate matter induces macrophage infiltration,unfolded protein response,and lipid deposition in white adipose tissue[J].Am J Transl Res,2013,5(2):224-234.

[53]Özcan U,Cao Q,Yilmaz E,Lee AH,Iwakoshi NN,Özdelen E,et al.Endoplasmic reticulum stress links obesity,insulin action,and type 2 diabetes[J].Science,2004,306(5695):457-461.

[54]Hiratani K,Haruta T,Tani A,Kawahara J,Usui I,Kobayashi M.Roles of mTOR and JNK in serine phosphorylation,translocation,and degradation of IRS-1[J].Biochem Biophys Res Commun,2005,335(3):836-842.

[55]Ryu D,Seo WY,Yoon YS,Kim YN,Kim SS,Kim HJ,et al.Endoplasmic reticulum stress pro⁃motes LIPIN2-dependent hepatic insulin resistance[J].Diabetes,2011,60(4):1072-1081.

[56]Sørensen M,Daneshvar B,Hansen M,Dragsted LO,Hertel O,Knudsen L,et al.Personal PM2.5exposure and markers of oxidative stress in blood[J].Environ HealthPerspect,2003,111(2):161-166.

[57]Xu Z,Xu X,Zhong M,Hotchkiss IP,Lewandowski RP,Wagner JG,et al.Ambient particulate air pollution induces oxidative stress and alterations of mito⁃chondria and gene expression in brown and white adipose tissues[J].Part Fibre Toxicol,2011,8(1):20.

[58]Liu C,Fonken LK,Wang A,Maiseyeu A,Bai Y,Wang TY,et al.Central IKKβ inhibition prevents air pollution mediated peripheral inflammation andexaggeration of typeⅡdiabetes[J].Part Fibre Toxicol,2014,11(1):53.

[59]Xu X,Rao X,Wang TY,Jiang SY,Ying Z,Liu C,et al.Effect of co-exposure to Nickel and partic⁃ulate matter on insulin resistance and mitochondri⁃al dysfunction in a mouse model[J].Part Fibre Toxicol,2012,9(1):40.

[60]Kim JA,Wei YZ,Sowers JR.Role of mitochondri⁃al dysfunction in insulin resistance[J].Circ Res,2008,102(4):401-414.

[61]Nishikawa T,Kukidome D,Sonoda K,Fujisawa K,Matsuhisa T,Motoshima H,et al.Impact of mito⁃chondrial ROS production in the pathogenesis of insulin resistance[J].Diabetes Res Clin Pract,2007,77(Suppl 1):S161-S164.

[62]Grevendonk L, Janssen BG, Vanpoucke C, Lefebvre W,Hoxha M,Bollati V,et al.Mitochon⁃drial oxidative DNA damage and exposure to par⁃ticulate air pollution in mother-newborn pairs[J].Environ Health,2016,15(1):10.

[63] Jiang H,Torregrossa AC,Potts A,Pierini D,Aranke M, Garg HK,etal.Dietary nitrite improves insulin signaling through GLUT4 translo⁃cation[J].Free Radic Biol Med,2014,67:51-57.

[64]Boonloh K,Kukongviriyapan V,Kongyingyoes B,Kukongviriyapan U, Thawornchinsombut S,Pannangpetch P.Rice bran protein hydrolysates improve insulin resistance and decrease proinflammatory cytokine gene expression in rats fed a high carbohydrate-high fat diet[J].Nutrients,2015,7(8):6313-6329.

Effect of ambient fine particulate matter(PM2.5)upon insulin resistance and its mechanism:research progress

LI Ling-huan,YAO Yuan-fa,LI Han-bing
(Department of Pharmacology,College of Pharmaceutical Sciences,Zhejiang University of Technology,Hangzhou 310014,China)

A large number of experimental and epidemiological studies have shown that inhaled ambient fine particulate matter(PM2.5)could induce stress inflammation,enhance insulin resistance(IR),increase the risk for developing diabetes mellitus(DM)and lead to exacerbation of DM.The mecha⁃nisms of PM2.5resulting in or aggravating insulin resistance include endothelial dysfunction,endoplasmic reticulum stress,mitochondrial stress and inflammation factors,thus leading to the change in cellular func⁃tions.This review discussed the latest research findings about the effects of PM2.5on IR,especially the mechanisms.

PM2.5;insulin resistance;diabetes mellitus

LI Han-bing,E-mail:hanbing.li@163.com,Tel:(0571)88320535

R994.6

A

1000-3002-(2016)11-1230-07

10.3867/j.issn.1000-3002.2016.11.016

Foundation item:The project supported by Zhejiang Provincial Natural Science Foundation of China(LY14H310003)

2016-06-08 接受日期:2016-09-08)

(本文编辑:贺云霞)

浙江省自然科学基金项目(LY14H310003)

李灵欢,硕士研究生,主要从事胰岛素抵抗与糖脂代谢研究;李汉兵,博士,副教授,主要从事胰岛素抵抗与代谢综合征研究。

李汉兵,E-mail:hanbing.li@163.com,Tel:(0571)88320535

猜你喜欢
酪氨酸脂肪组织磷酸化
T69E模拟磷酸化修饰对Bcl-2与Nur77相互作用的影响
GDM孕妇网膜脂肪组织中Chemerin的表达与IRS-1及其酪氨酸磷酸化分析
高脂肪饮食和生物钟紊乱会影响体内的健康脂肪组织
双源CT对心脏周围脂肪组织与冠状动脉粥样硬化的相关性
ITSN1蛋白磷酸化的研究进展
白芍多糖抑制酪氨酸酶活性成分的筛选
枸骨叶提取物对酪氨酸酶的抑制与抗氧化作用
蔷薇花总黄酮对酪氨酸酶的抑制作用及其动力学行为
磷酸化肽富集新方法研究进展
吃酱油伤疤会变黑?