淋巴管内皮祖细胞标志物的研究进展

2016-01-16 02:27孙一宇戴婷婷综述李圣利审校
组织工程与重建外科杂志 2016年3期
关键词:祖细胞淋巴管淋巴

孙一宇 戴婷婷 综述 李圣利 审校

·综述·

淋巴管内皮祖细胞标志物的研究进展

孙一宇戴婷婷综述李圣利审校

【摘要】淋巴管内皮祖细胞是淋巴管新生和再生的起点,分化成的淋巴管内皮细胞构成了淋巴管网络的基本框架。随着淋巴管新生和再生研究的深入,淋巴管内皮祖细胞在其中发挥的作用得到越来越多的关注。淋巴管内皮祖细胞已成为当前的研究热点之一,我们就其标志物的相关进展进行综述。

【关键词】淋巴管内皮祖细胞标志物分子机制

淋巴管内皮祖细胞(LEPCs)或淋巴管内皮前体细胞目前尚无明确定义,被认可的LEPCs主要有两种类型:一是在胚胎发育期(E9.5~E12.5),主静脉内皮上表达Prox1的内皮细胞[1];二是出生后在骨髓、外周血、脐血中表达CD34+、CD133+和VEGFR3+的细胞[2]。在LEPCs向淋巴管内皮细胞分化的过程中,其形态和标志物变化很大,这些标志物在不同部位、不同时间呈现强弱不同的表达,介导着不同的信号传导,对LEPCs的分化和迁移起着重要作用。现对一些主要的标志物及其对LEPCs的影响进行综述。

1 Prox1

Prox1(Prospero-related homeobox transcription factor 1,即果蝇prospero同源异形盒蛋白1)是一种同源转录因子,存在于细胞核内,由位于染色质上q32.2~q32.3区域的Prox1基因编码,分子量为83.2 KDa[3-4],在中枢神经系统、晶状体、心脏、肝脏、胰腺等组织中均有表达,但在脉管系统中的表达仅限于淋巴管内皮细胞[5]。在9.5 d的小鼠胚胎和6~7周的人胚胎内的主静脉前侧内皮细胞中Prox1开始表达,并持续终生[6-7]。

Prox1是LEPCs分化的调控开关[6,8]。Wigle等[7]发现,在敲

此外,Prox1对LEPCs的数量也具有调控作用。Srinivasan 等[11-12]的研究发现,Prox1的数量对LEPCs的数量和淋巴静脉瓣的形成都会产生影响。研究显示,Prox1杂合的小鼠胚胎(Prox1+/-)中LEPCs的数量明显少于野生基因型(Prox1+/+)的小鼠胚胎,且在胚胎中未见淋巴静脉瓣的形成。其原因可能为某种转录因子以一种剂量依赖型的方式与Coup-TFⅡ/ Prox1复合体相竞争,从而实现对Prox1表达的负性调节,进而导致主静脉内产生的LEPCs数量减少。

过去认为,Prox1的活性对LEPCs的分化起调控作用,但对其迁移却无影响[7]。而研究发现,在Prox1-/-的小鼠胚胎内LECPs没有进一步分化,而且也没有定向的迁移和出芽,从反面证明了其对出芽有影响[6]。现在有实验证实,其对主静脉和节间静脉处的LEPCs的出芽都有影响[1,13]。最新发现的Prox1-Vegfr3反馈回路解释了淋巴管内皮细胞的定向迁移及数量调控的问题,显示在胚胎前主静脉的背外侧间质中,VEGF-C的分泌较其他地方更多,VEGF-C通过与VEGFR-3的结合触发了反馈回路使得此处的Prox1的表达维持稳定,进而保证了LEPCs数量及其后的迁移[14]。

2 LYVE-1

LYVE-1(Lymphatic vessel hyaluronan receptor-1,即淋巴管透明质酸受体-1)是一种表达在细胞膜上的由322个氨基酸残基组成的Ⅰ型完整跨膜糖蛋白受体[15-17]。LYVE-1被认为是目前最特异的淋巴管内皮细胞标志[18-19],已有实验证实LYVE-1表达在多种不同组织来源的淋巴管内皮细胞上[6,20-22],同时有研究发现,LYVE-1亦表达于肿瘤、炎症组织中巨噬细胞的一个亚群内和肝脏、脾脏血管窦内皮细胞内[23-24]。LYVE-1是最早表达在LEPCs上的标志物,在小鼠胚胎第9天即可检测到其表达[9,25],其意义可能在于使 LEPCs接受诱导信号并向淋巴管内皮方向分化[6],但具体功能目前尚未明确。因为在缺少LYVE-1的小鼠(LYVE-1-/-)身上并未发现任何有关淋巴管发育方面的异常[26],推测LYVE-1可能与透明质酸的转运和细胞黏附相关[20,27]。

3 Podoplanin

Podoplanin(肾小球祖细胞表面蛋白)是Ⅰ型跨膜唾液黏蛋白样糖蛋白,分子量为38 KDa。Podoplanin并不是淋巴管内皮细胞的专属标记物,在肾小球足突细胞、成骨细胞、骨细胞、基底角质化细胞、脉络丛上皮细胞、胸腺Ⅰ型上皮细胞、肌上皮细胞、皮脂腺贮备细胞、前列腺的成肌纤维细胞、卵巢粒层细胞、滤泡树突状细胞和肺泡Ⅰ型上皮细胞上均能见到局部表达,但尚未发现在血管内皮上的表达[28-30]。Podoplanin 在11.5 d的小鼠胚胎主静脉内皮细胞中开始表达,随后在Prox1+的LEPCs中表达,且主要表达在腔内壁,极少表达在腔外壁、腔侧壁及胞质细胞器内[31-32]。

Podoplanin是一个区分LEPCs是否出芽的重要标志,只有在Prox1+LEPCs完全离开主静脉时才会表达[13,33],这部分细胞会进一步形成淋巴囊,而留在原位的Prox1+Podoplanin--LEPCs则会形成淋巴静脉瓣[11]。其表达机制尚未研究清楚。

Podoplanin在淋巴囊与主静脉分离上起重要作用,能与血小板上的CLEC2受体结合,引起血小板的聚集和活化,进而使得两者分离[34-38]。实验发现,LEPCs末期(约E12.5),在淋巴囊与主静脉结合处表达Podoplanin的LEPCs会与血小板结合并引起血小板的聚集和活化,聚集的血小板直接封闭孔洞或是间接地释放血管收缩物质亦或是释放生长因子产生壁细胞,从而实现淋巴囊与主静脉的分离。

某些病理条件下,由骨髓分化来的Pod+细胞通过转分化而表达Prox1,且功能与LEPCs相同,并参与淋巴管的发育[39]。

4 VEGFR-3

VEGFR-3(Vascular endothelial growth factor receptor 3,即血管内皮生长因子受体3)是VEGF受体家族成员,由一组结构上相关的络氨酸激酶构成,包括了7个免疫球蛋样结构域(其中第五个Ig结构域被二硫键所替代)、一个跨膜结构域及一个中断激酶结构域。在小鼠胚胎E8.5,VEGFR-3开始表达,且几乎在所有内皮细胞上都表达,但当淋巴系统开始分化时,其表达就限制在了淋巴管内皮细胞上了[1]。近年来发现,在骨髓、肝窦等器官的有孔毛细血管内皮及人恶性肿瘤的新生毛细血管内皮上也有表达[40]。

VEGF-C在诱导淋巴管新生及再生方面的作用已得到广泛证实,作为其特异受体的VEGFR-3与VEGF-C间形成的信号传导途径对LEPCs的迁移至关重要[32,41]。在信号通路中,VEGFR3与下游的ERK与P13K结合,从而在指导LEPCs从受限制的主要静脉区域出芽迁移发挥重要功能[42]。在VEGF-C-/-的小鼠胚胎内,LEPCs不能从主静脉中分离,VEGF-C+/-的小鼠发生了淋巴管发育不良和淋巴水肿[43-44],而当VEGFR-3过度表达时又会发生选择性的淋巴管增生[45]。Srinivasan等[11]发现,在淋巴静脉瓣上的内皮细胞不表达VEGFR3。另外,VEGFR-3与Prox1形成的反馈回路则对LEPCs的定向迁移起到调控作用[14]。

Li等[46]利用PEI-alginate(聚乙烯亚胺-海藻酸钠)纳米微粒携带VEGFR-3的siRNA,将其导入到CD34+、VEGFR3+的内皮祖细胞中,从而抑制VEGFR-3 mRNA的表达,结果发现细胞不能分化成淋巴管内皮细胞,而且细胞的扩增、迁移等都受到严重抑制。因此,VEGFR3可以作为LEPCs的一个标志。研究显示,在去除了配基结合区域(LBD)的VEGFR-3小鼠胚胎内,LEPCs可以形成淋巴囊但却没有进一步的淋巴管新生,而在络氨酸激酶失活的小鼠胚胎内连淋巴囊都不能形成[47]。表示LEPCs形成淋巴囊主要是受VEGFR-3络氨酸激酶的影响而非配基结合区,推测VEGFR-3的络氨酸激酶还可以被其他物质激活,进而形成淋巴囊。

5 CD34

CD34抗原是一种阶段特异性白细胞分化抗原,是分子量为105~120 KDa的高度糖基化Ⅰ型跨膜蛋白,选择性表达于人类造血干细胞(Human stem cell,HSC)、祖细胞(Progenitor cell,PC)和血管内皮细胞表面。CD34+细胞是非均质性的细胞群,既含有造血干细胞,也存在不同分化阶段的各系造血祖细胞,并随着造血细胞逐渐成熟,CD34的表达量逐渐减少,直至消失[48]。

CD34是一种造血干细胞的标志,大量研究显示CD34+细胞中包含能分化成内皮细胞的祖细胞[49-52],VEGFR3可以作为淋巴管内皮细胞的主要标志,CD133也是造血干细胞或祖细胞的一种标志,因为成熟的内皮细胞不表达CD133。所以,CD34+共表达VEGFR-3和CD133的细胞中很有可能就包含了LEPCs。Salven等[2]将CD34+、VEGFR-3+的胎肝和脐带血细胞在内皮细胞培养基中培养,产生了单层内皮细胞,这些细胞表达了多种淋巴管内皮细胞的表面标志,如LYVE1和Podoplanin。相关研究也进一步证实了这群细胞参与了淋巴管新生[53-54]。在骨髓及外周血中也分离出了同样的细胞,并且都具有淋巴管内皮细胞相同的功能[2,55]。Tan等[56]利用人脐带血细胞得到了同样的结果,并且发现VEFGC/VEGFR-3信号通路介导了这群细胞的分化。Nguyen等[57]通过培养人脐带静脉内皮细胞中CD34+、CD133+的祖细胞,并与人真皮淋巴管内皮细胞相比较,发现两者在基因与功能上有许多相似之处,即CD34+、CD133+的细胞很有可能就是LEPCs。眼部的大部分组织中均表达LYVE1,其中约有30%的细胞同时表达CD34 和Sca1,这部分细胞被认为可能是眼部的LEPCs[58]。

6 其他

Schoppmann等[59]发现,CD14+、VEGFR3+、CD31+、VEGFR-2+的单核细胞,在淋巴管新生的过程中具有高度发育可塑性,推测其可能为LEPCs。

单克隆抗体D2-40是淋巴管标志物,是一种相对分子质量为40 KDa的氧连接型唾液酸糖蛋白,经过组织超微结构和其他淋巴管标志物证实,只存在于淋巴管内皮细胞上。但目前文献较少,其特异性尚需进一步证实[60-61]。

CD133属于细胞膜蛋白超家族成员,为一个含有865个氨基酸的糖蛋白。研究显示,CD133是干细胞的特异标记分子,作为干细胞和前体细胞表面特征分子被广泛报道,如内皮前体细胞[62]。已经有许多实验从CD133+的细胞中分离培养出了LEPCs[2,56,63-64]。

NRP-2(Neuropilin-2,即神经纤毛蛋白-2)是一种跨膜非酪氨酸激酶的糖蛋白,其短胞质域限制了信号传导能力。在脉管系统中,NRP-2的表达限定在淋巴系统,在静脉只有微量的表达。在LEPCs上,NRP-2作为VEGFR-3的协同受体调控LEPCs的正常出芽,但具体机制不明[65]。

近年来,越来越多关于LEPCs的研究已应用到了上述标志物,但各种标记物仍有许多局限和不足,比如Prox-1因表达在细胞核,所以并不能成为研究LEPCs理想的标记物,目前是将它和其他标记物联合作免疫组织化学双染来提高识别LEPCs的特异性。但却存在着耗时、耗力、耗经费,相互影响,可能出现人为误差等缺点;而VEGFR-3特异性不够强,其在创伤愈合后新生毛细血管内皮也出现表达。介于现阶段实验条件及理论的限制应用,比较可靠的标志物主要为Prox1、Podoplanin和LYVE-1。在应用特异性标志物的基础上,与其他内皮标记因子协同作用,根据表达的强弱及LEPCs的形态学特点来确定LEPCs才是真正可靠的。

参考文献

[1]Yang Y,Oliver G.Development of the mammalian lymphatic vasculature[J].J Clin Invest,2014,124(3):888-897.

[2]Salven P,Mustjoki S,Alitalo R,et al.VEGFR-3 and CD133 identify a population of CD34+lymphatic/vascular endothelial precursor cells[J].Blood,2003,101(1):168-172.

[3]Zinovieva RD,Duncan MK,Johnson TR,et al.Structure and chromosomal localization of the human homeobox gene Prox 1[J]. Genomics,1996,35(3):517-522.

[4]Wilting J,Papoutsi M,Christ B,et al.The transcription factor Prox1 is a marker for lymphatic endothelial cells in normal and diseased human tissues[J].FASEB J,2002,16(10):1271-1273.

[5]Oliver G,Sosa-Pineda B,Geisendorf S,et al.Prox 1,a prosperorelated homeobox gene expressed during mouse development[J]. Mech Dev,1993,44(1):3-16.

[6]Wigle JT,Harvey N,Detmar M,et al.An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype[J]. EMBO J,2002,21(7):1505-1513.

[7]Wigle JT,Oliver G.Prox1 function is required for the development of the murine lymphatic system[J].Cell,1999,98(6):769-778.

[8]Hong YK,Harvey N,Noh YH,et al.Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate[J]. Dev Dyn,2002,225(3):351-357.

[9]Oliver G.Lymphatic vasculature development[J].Nat Rev Immunol, 2004,4(1):35-45.

[10]Petrova TV,Makinen T,Makela TP,et al.Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor[J].EMBO J,2002,21(17):4593-4599.

[11]Srinivasan RS,Oliver G.Prox1 dosage controls the number of lymphatic endothelial cell progenitors and the formation of the lymphovenous valves[J].Genes Dev,2011,25(20):2187-2197.

[12]Srinivasan RS,Escobedo N,Yang Y,et al.The Prox1-Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors[J].Genes Dev,2014,28(19):2175-2187. [13]Yang Y,Oliver G.Transcriptional control of lymphatic endothelial cell type specification[J].Adv Anat Embryol Cell Biol,2014,214: 5-22.

[14]Yang Y,Garcia-Verdugo JM,Soriano-Navarro M,et al.Lymphatic endothelialprogenitorsbudfromthecardinalveinand intersomitic vessels in mammalian embryos[J].Blood,2012,120 (11):2340-2348.

[15]Jackson DG.Biology of the lymphatic marker LYVE-1 and applicationsinresearchintolymphatictraffickingand lymphangiogenesis[J].Apmis,2004,112(7-8):526-538.

[16]Jain RK,Padera TP.Development.Lymphatics make the break [J].Science,2003,299(5604):209-210.

[17]Yamashita JK.Differentiation of arterial,venous,and lymphatic endothelial cells from vascular progenitors[J].Trends Cardiovasc Med,2007,17(2):59-63.

[18]Jackson DG.The lymphatics revisited:new perspectives from the hyaluronan receptor LYVE-1[J].Trends Cardiovasc Med,2003, 13(1):1-7.

[19]Jackson DG.New molecular markers for the study of tumour lymphangiogenesis[J].Anticancer Res,2001,21(6B):4279-4283.

[20]Prevo R,Banerji S,Ferguson DJ,et al.Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium[J].J Biol Chem,2001,276(22):19420-19430.

[21]Haak MC,Bartelings MM,Jackson DG,et al.Increased nuchal translucency is associated with jugular lymphatic distension[J]. Hum Reprod,2002,17(4):1086-1092.

[22]Cursiefen C,Schlotzer-Schrehardt U,Kuchle M,et al.Lymphatic vessels in vascularized human corneas:immunohistochemical investigation using LYVE-1 and podoplanin[J].Invest Ophthalmol Vis Sci,2002,43(7):2127-2135.

[23]Mouta Carreira C,Nasser SM,di Tomaso E,et al.LYVE-1 is not restricted to the lymph vessels:expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis [J].Cancer Res,2001,61(22):8079-8084.

[24]Grant AJ,Goddard S,Ahmed-Choudhury J,et al.Hepatic expression of secondary lymphoid chemokine(CCL21)promotes the development of portal-associated lymphoid tissue in chronic inflammatory liver disease[J].Am J Pathol,2002,160(4):1445-1455.

[25]Alitalo K,Tammela T,Petrova TV.Lymphangiogenesisin development and human disease[J].Nature,2005,438(7070):946-953.

[26]Gale NW,Prevo R,Espinosa J,et al.Normal lymphatic development and function in mice deficient for the lymphatic hyaluronan receptor LYVE-1[J].Mol Cell Biol,2007,27(2):595-604.

[27]Nandi A,Estess P,Siegelman MH.Hyaluronan anchoring andregulation on the surface of vascular endothelial cells is mediated through the functionally active form of CD44[J].J Biol Chem, 2000,275(20):14939-14948.

[28]Raica M,Cimpean AM,Ribatti D.The role of podoplanin in tumor progression and metastasis[J].Anticancer Res,2008,28 (5B):2997-3006.

[29]Wicki A,Christofori G.The potential role of podoplanin in tumour invasion[J].Br J Cancer,2007,96(1):1-5.

[30]Schacht V,Dadras SS,Johnson LA,et al.Up-regulation of the lymphatic marker podoplanin,a mucin-type transmembrane glycoprotein,in human squamous cell carcinomas and germ cell tumors[J].Am J Pathol,2005,166(3):913-921.

[31]Ji RC.Lymphatic endothelial cells,tumor lymphangiogenesis and metastasis:Newinsightsintointratumoralandperitumoral lymphatics[J].Cancer Metastasis Rev,2006,25(4):677-694.

[32]Tammela T,Alitalo K.Lymphangiogenesis:Molecular mechanisms and future promise[J].Cell,2010,140(4):460-476.

[33]Francois M,Short K,Secker GA,et al.Segmental territories along the cardinal veins generate lymph sacs via a ballooning mechanism during embryonic lymphangiogenesis in mice[J].Dev Biol,2012,364(2):89-98.

[34]Uhrin P,Zaujec J,Breuss JM,et al.Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation[J].Blood,2010,115(19):3997-4005.

[35]Suzuki-Inoue K,Inoue O,Ding G,et al.Essential in vivo roles of the C-type lectin receptor CLEC-2:embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets[J].J Biol Chem,2010,285(32):24494-24507.

[36]Kato Y,Fujita N,Kunita A,et al.Molecular identification of Aggrus/T1alphaasaplateletaggregation-inducingfactor expressed in colorectal tumors[J].J Biol Chem,2003,278(51): 51599-51605.

[37]Bertozzi CC,Schmaier AA,Mericko P,et al.Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling[J].Blood,2010,116(4):661-670.

[38]Watson SP,Lowe K,Finney BA.Platelets in lymph vessel development and integrity[J].Adv Anat Embryol Cell Biol, 2014,214:93-105.

[39]Lee JY,Park C,Cho YP,et al.Podoplanin-expressing cells derived from bone marrow play a crucial role in postnatal lymphatic neovascularization[J].Circulation,2010,122(14):1413-1425.

[40]Tammela T,Saaristo A,Lohela M,et al.Angiopoietin-1 promotes lymphatic sprouting and hyperplasia[J].Blood,2005,105(12): 4642-4648.

[41]Norrmen C,Tammela T,Petrova TV,et al.Biological basis of therapeuticlymphangiogenesis[J].Circulation,2011,123(12): 1335-1351.

[42]Makinen T,Veikkola T,Mustjoki S,et al.Isolated lymphatic endothelial cells transduce growth,survival and migratory signals via the VEGF-C/D receptor VEGFR-3[J].EMBO J,2001,20(17): 4762-4773.

[43]Karkkainen MJ,Haiko P,Sainio K,et al.Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins[J].Nat Immunol,2004,5(1):74-80.

[44]Kuchler AM,Gjini E,Peterson-Maduro J,et al.Development of the zebrafish lymphatic system requires VEGFC signaling[J]. Curr Biol,2006,16(12):1244-1248.

[45]Jeltsch M,Kaipainen A,Joukov V,et al.Hyperplasia of lymphatic vessels in VEGF-C transgenic mice[J].Science,1997,276(5317): 1423-1425.

[46]Li T,Wang GD,Tan YZ,et al.Inhibition of lymphangiogenesis of endothelial progenitor cells with VEGFR-3 siRNA delivered with PEI-alginate nanoparticles[J].Int J Biol Sci,2014,10(2): 160-170.

[47]Zhang L,Zhou F,Han W,et al.VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis[J].Cell Res,2010,20(12):1319-1331.

[48]Osawa M,Hanada K,Hamada H,et al.Long-term lymphohematopoieticreconstitutionbyasingleCD34-low/negative hematopoietic stem cell[J].Science,1996,273(5272):242-245.

[49]Schmeisser A,Garlichs CD,Zhang H,et al.Monocytes coexpress endothelial and macrophagocytic lineage markers and form cordlike structures in Matrigel under angiogenic conditions[J]. Cardiovasc Res,2001,49(3):671-680.

[50]Hildbrand P,Cirulli V,Prinsen RC,et al.The role of angiopoietins in the development of endothelial cells from cord blood CD34+ progenitors[J].Blood,2004,104(7):2010-2019.

[51]Chavakis E,Aicher A,Heeschen C,et al.Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells[J].J Exp Med,2005,201(1):63-72.

[52]Asahara T,Murohara T,Sullivan A,et al.Isolation of putative progenitor endothelial cells for angiogenesis[J].Science,1997,275 (5302):964-967.

[53]Religa P,Cao R,Bjorndahl M,et al.Presence of bone marrowderived circulating progenitor endothelial cells in the newly formed lymphatic vessels[J].Blood,2005,106(13):4184-4190.

[54]Kerjaschki D,Huttary N,Raab I,et al.Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants[J].Nat Med,2006,12(2):230-234.

[55]Ingram DA,Mead LE,Tanaka H,et al.Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood[J].Blood,2004,104(9):2752-2760.

[56]Tan YZ,Wang HJ,Zhang MH,et al.CD34+VEGFR-3+progenitor cells have a potential to differentiate towards lymphatic endothelial cells[J].J Cell Mol Med,2014,18(3):422-433.

[57]Nguyen VA,Furhapter C,Obexer P,et al.Endothelial cells from cordbloodCD133+CD34+progenitorssharephenotypic, functional and gene expression profile similarities with lymphatics [J].J Cell Mol Med,2009,13(3):522-534.

[58]Xu H,Chen M,Reid DM,et al.LYVE-1-positive macrophages are present in normal murine eyes[J].Invest Ophthalmol Vis Sci, 2007,48(5):2162-2171.

[59]Schoppmann SF,Birner P,Stockl J,et al.Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis[J].Am J Pathol,2002, 161(3):947-956.

[60]Yonemura Y,Endou Y,Tabachi K,et al.Evaluation of lymphatic invasion in primary gastric cancer by a new monoclonal antibody, D2-40[J].Hum Pathol,2006,37(9):1193-1199.

[61]Kahn HJ,Bailey D,Marks A.Monoclonal antibody D2-40,a new marker of lymphatic endothelium,reacts with Kaposi's sarcoma and a subset of angiosarcomas[J].Mod Pathol,2002,15(4):434-440.

[62]Peichev M,Naiyer AJ,Pereira D,et al.Expression of VEGFR-2 and AC133 by circulating human CD34(+)cells identifies a population of functional endothelial precursors[J].Blood,2000,95 (3):952-958.

[63]Ieni A,Giuffre G,Adamo V,et al.Prognostic impact of CD133 immunoexpression in node-negative invasive breast carcinomas [J].Anticancer Res,2011,31(4):1315-1320.

[64]张美华,王海杰.人脐带血淋巴管内皮祖细胞的分化及其生物学特征[J].解剖学报,2006,37(4):473-478.

[65]Xu Y,Yuan L,Mak J,et al.Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3[J].J Cell Biol,2010,188(1):115-130.

【中图分类号】R551.2

【文献标识码】B

【文章编号】1673-0364(2016)03-0195-04

doi:10.3969/j.issn.1673-0364.2016.03.015

作者单位:200011上海市上海交通大学医学院附属第九人民医院整复外科。

通讯作者:李圣利(E-mail:drlishengli@sina.com)。除Prox1基因的小鼠胚胎中淋巴管完全缺失,而且胚胎在14.5 d时全部死亡;同时还发现,其内皮细胞没有表达淋巴管内皮特异性标志,而是维持血管内皮的表型[9]。另有研究显示,Prox1的过度表达使其他血管内皮细胞的标志物表达受到抑制,而淋巴管内皮细胞特异标志物 (如VEGFR-3和Podoplanin)的表达却被上调,表明在正常情况下Prox1使LEPCs得以维持其特异性,并防止其向其他细胞类型分化[8,10]。

收稿日期:(2016年2月3日;修回日期:2016年3月25日)

Advances in Lymphatic Endothelial Progenitor Cell Markers

SUN YiYu,DAI Tingting,LI Shengli.Department of Plastic and Reconstructive Surgery,Shanghai Ninth People's Hospital,Shanghai Jiaotong University School of Medicine, Shanghai 200011,China.Corresponding author:LI Shengli(E-mail:drlishengli@sina.com).

【Summary】Lymphatic endothelial progenitor cell(LEPC)is the origin of lymph-vasculogenesis and lymph-angiogenesis. Lymphatic endothelial cell differentiated from LEPC constructed the framework of the lymphatic network.With the deepening of lymph-angiogenesis and lymph-vasculogenesis research,the role of lymphatic endothelial progenitor cell has attracted more and more attention.How to identify lymphatic endothelial progenitor cell has become one of the research focus.In this paper,the research progress of cell markers on LEPCs was reviewed.

【Key words】Lymphatic endothelial progenitor cell;Markers;Molecular mechanism

猜你喜欢
祖细胞淋巴管淋巴
淋巴管栓的研究进展*
内皮祖细胞和慢性阻塞性肺疾病
教你一套全身淋巴按摩操
中医药对淋巴管新生与回流功能的作用研究进展
足部淋巴管分布的研究进展及临床意义
不同浓度镁离子干预对妊娠糖尿病妇女内皮祖细胞的影响
综合护理淋巴消肿疗法在降低乳腺癌术后上肢淋巴水肿发生率中的应用效果观察
北美淋巴水肿治疗师培养、认证及对我国的启示
再生肝脏的细胞
肺淋巴管肌瘤病肺内及肺外CT表现