天然多酚类抗氧化成分及治疗阿尔茨海默病的潜力

2015-12-09 23:57热孜亚艾买提综述祖丽菲亚吾斯曼努尔买买提艾买提审校
医学综述 2015年9期
关键词:阿尔茨海默病抗氧化剂治疗

热孜亚·艾买提(综述),祖丽菲亚·吾斯曼,努尔买买提·艾买提(审校)

(新疆医科大学维吾尔医学院,乌鲁木齐 830011)



分子生物医学

天然多酚类抗氧化成分及治疗阿尔茨海默病的潜力

热孜亚·艾买提△(综述),祖丽菲亚·吾斯曼,努尔买买提·艾买提※(审校)

(新疆医科大学维吾尔医学院,乌鲁木齐 830011)

摘要:阿尔茨海默病(AD)是最常见的神经退行性疾病,到目前为止,尚未有一个明确的方法可以控制其发展。氧化应激是该疾病的主要标志,并认为是AD的治疗目标。饮食中所包含的天然多酚类化合物的神经保护作用是通过消除自由基和增强抗氧化能力来实现的。此外,天然多酚类化合物通过刺激转录,能加速抗氧化系统。该文综述了AD患者大脑中氧化应激反应的原因,并阐述了天然多酚类化合物对AD患者的神经保护作用及其潜在的治疗作用。

关键词:阿尔茨海默病;多酚类;抗氧化剂;治疗

阿尔茨海默病(Alzheimer′s disease,AD)是常见而尚未有明确治愈方法的神经系统退行性疾病。AD发病机制可能涉及多种病理因素,但AD神经变性潜在的机制现仍未被阐明。氧化应激是AD的主要标志,增加的氧化应激会导致包括DNA、RNA、脂质、核酸在内的物质氧化以及有轻微的意识障碍[1]。在AD患者大脑中,线粒体功能障碍可使活性氧物种的释放加剧[2]。在金属离子存在的情况下,淀粉样肽能产生自由基[3]。在轻度意识障碍患者大脑中,氮氧化物的活动性也是增加的[4-5]。胶质细胞活化是AD和轻度意识障碍的特点[6]。天然多酚类具有抗氧化作用,可有效减轻意识障碍和β-样淀粉样肽的病理损伤[7]。与药物治疗相比,天然多酚可能作为一种潜在的治疗和预防AD的策略。现就天然多酚类化合物对AD患者神经保护作用的研究进展予以综述。

1天然多酚类物质

天然多酚类化合物多存在于植物、水果、蔬菜、油、红酒和茶类中,而黄酮类是其最大的组成部分,结构中含有羟基、甲氧基和糖基化,这些结构能有效影响天然多酚类化合物的化学、物理和生物学特性[7]。天然多酚类化合物通过消灭自由基或激活内源性抗氧化能力而起到神经保护作用;此外,其还能通过激活Nrf/ARE通路(氧化和化学应激的防御性转导通路)来刺激合成的内源性抗氧化剂分子[8]。除了抗氧化功能之外,这些化合物都有一些不同的目标分子,通过若干个信号通路,在细胞上呈现多种生物活性[如多酚可调节核因子κB 或sirtuin type 1(SIRT1)的活性]而发挥保护作用[9]。

2天然多酚类对AD患者的有益作用

2.1绿茶中的多酚类化合物绿茶含有多种生物活性物质,尤其富含黄酮类化合物(包括儿茶素及其衍生物);绿茶的其他化合物还包括黄酮醇(槲皮素、山奈酚和芦丁)、咖啡因、酚酸类物质、茶氨酸等[10]。绿茶中的儿茶素和茶多酚通过螯合金属离子发挥其抗氧化作用(如释放铁离子和钙离子),并且通过芬顿反应防止羟基自由基的生成;该化合物也能转移电子到DNA活性氧类诱导的自由基位点,防止DNA的氧化修饰[11]。应用绿茶治疗能保护蛋白质和脂类被氧化,能降低年老老鼠海马神经内的脂褐质沉积;绿茶治疗的老鼠更具备一些特殊的学习能力[12]。茶多酚作为从绿茶中提取出的主要化合物,能修复β-淀粉样蛋白引起的神经损伤[13]。这种有益效应也许归因于抑制核因子κB通道。茶多酚还能消除β-淀粉样蛋白引起的氧化应激力,减少老鼠大脑内的海马脂质过氧化[14]。观察发现,茶多酚能恢复线粒体的功能,替代神经保护的机制[15]。研究指出,绿茶中多酚类的神经保护作用部分归因于超氧化物歧化酶和过氧化氢酶等保护性酶;同时人类流行病学和动物研究也表明,绿茶饮食与出现痴呆的频率呈反比[16]。

2.2木兰中所提取的多酚类化合物在中国和日本用木兰做多种传统的中药制剂[17]。木兰提取物双苯酚结构中的新木脂素包括厚朴酚,而厚朴酚和4-O-甲基是木兰类多种药物效应的相关研究核心;木兰提取物能防止神经性损伤的发展,且通过抗氧化机制能防止毒物的攻击[18-19]。厚朴酚类能防止神经元受到过氧化氢、谷氨酸和N-甲基-D-天冬氨酸所诱导的毒性作用,而其抗氧化物成分有利于神经保护[19]。此外,厚朴酚类还能衰减β-淀粉样蛋白诱导PC12(大鼠肾上腺髓质嗜铬细胞瘤分化细胞株)细胞凋亡[20]。这类化合物的神经保护作用是通过减少ROS的生成,抑制细胞内钙的升高和胱天蛋白酶3的活性来完成的;口服厚朴酚可恢复小鼠总谷胱甘肽的水平,降低大脑内的氧化应激[18];可预防与年龄有关的学习和记忆减退及衰老加速的老鼠体内胆碱的缺乏[21]。研究表明,厚朴还有抗炎和抗氧化性能,这与避免神经性炎症与氧化应激等神经保护作用有关[15]。4-O-甲基的药物效应不仅能抗氧化和激活细胞外调节蛋白激酶(ERK)通道,还能抑制核因子κB通道,以减轻神经性炎症和β-淀粉样蛋白的负担[22]。目前,木兰提取物作为商品能较易获得,并且把这种化合物用在AD患者身上,观察化合物对该类患者是否有效,是相对安全的[23]。

2.3蓝莓中所提取的多酚类化合物蓝莓含有多种多酚类化合物(包括类黄酮),儿茶素是其含有的主要类黄酮类,抗氧化能力很强[24]。体外实验研究表明,蓝莓提取物具有抗氧化和抗炎特性,可起神经保护作用[25]。研究发现,蓝莓对β-淀粉样蛋白诱导的神经毒性起的神经保护作用与谷胱甘肽的氧化还原缓冲作用相关;蓝莓提取物还能抑制脂多糖诱导的炎症反应[26]。蓝莓提取物能恢复APP/PS1转基因和非转基因小鼠的认知功能[27],还可阻止β-淀粉样蛋白的聚集[28],并可改善老年大鼠的空间工作记忆,这与ERK1/2的增加密切相关[29]。饮食蓝莓类能改善老年老鼠额叶皮质、海马和纹状体,改善与年龄有关的核因子κB的表达[30]。由此得出结论,蓝莓类的神经保护效应与其激活相应通道、消除自由基、激活相关的保护信号、抑制应急信号等有关[31]。

2.4银杏叶中所提取的多酚类化合物银杏叶提取物包含24%的黄酮类和6%的萜烯类化合物,这种组成比例特点有其独特的药理作用[7]。体外研究表明,银杏叶提取物能清除一氧化氮、羟基自由基、超氧阴离子和过氧自由基等[32]。银杏叶提取物通过抑制β-淀粉样蛋白纤维的形成而保护细胞免受毒性[33],其还可保护线粒体,抑制过氧化氢和β-淀粉样蛋白的毒性[34],改善Tg2576鼠空间学习和记忆能力[35]。长期用银杏叶提取物治疗的Tg2576鼠皮层控制与对照组相比除了海马之外,β-淀粉前体蛋白(β-Amyloid precursor protein,APP)的水平降低了约50%[36]。银杏叶提取物无需通过修改APP的形式或α-分泌表达而刺激释放APP(非淀粉样过程),表明其可能参与认知增强过程[37]。银杏叶提取物的生物效应可能与其有效成分调节蛋白质表达有关,例如:银杏叶提取物类黄酮和萜类等成分会降低诱导型一氧化氮合酶的表达[38],其还能降低β-淀粉样蛋白介导的核因子κB的活化[33]。文献报道,银杏内酯是抗血小板活化因子的强有力拮抗剂,这种作用与其神经保护作用有关[39]。

2.5葡萄中所提取的多酚类化合物葡萄的产物包括葡萄酒、葡萄籽、葡萄皮[40]。与葡萄皮相比,葡萄籽含有高浓度的单体、低聚物和聚合物黄烷-3-醇类;每克葡萄籽提取物中含有592.5 kg干重的总多酚含量(包含没食子酸、儿茶素、表儿茶素和原花青素等);葡萄皮原花青素比葡萄籽提取物含有较高的聚合物[41]。葡萄多酚组成成分和含量在不同的葡萄榨汁也是不同的,紫葡萄汁含单个酚类化合物的量最高,并总酚浓度最高[40]。紫葡萄汁的主要成分是黄烷-3-醇、花青素和羟基肉桂[42]。红葡萄酒的活性成分是白藜芦醇,是一种天然的植物抗毒素,主要来源于葡萄皮[40]。白葡萄榨汁含有羟基苯乙烯,总酚类量含量最低[43],而总酚类含量和抗氧化活性密切相关[40]。最近有研究指出,葡萄籽提取物能防止AD疾病模型小鼠的认知功能破坏;老鼠口服葡萄籽提取物能改善AD型认知功能,并降低大脑中低聚β-淀粉样蛋白的水平[7]。葡萄籽提取物中的多酚类可抑制β-淀粉样蛋白的自我组装及细胞毒性[44]。用葡萄籽多酚类提取物饲养的APP(SWE)/PS1dE9转基因小鼠大脑和血清中的β-淀粉样蛋白水平分别减少了33%和44%;多酚提取物能降低淀粉样斑块形成和小胶质细胞活化水平,分别为49%和70%[41]。一项药代动力学研究表明,用14C标记的饮食葡萄多酚类能达到大脑内,说明其可能适用于治疗神经退行性疾病[45]。然而,另一项研究指出,葡萄籽多酚提取物口服之前在大脑内的儿茶素、表儿茶素不能被检测到[46]。白藜芦醇是一种葡萄和红葡萄酒中的非类黄酮多酚类化合物,并具有广泛的生物活性和药理活性(包括抗氧化、抗炎、抗突变、抗癌等作用)[7]。其抗氧化性能对几种不同的氧化损伤起神经保护作用,如白藜芦醇显著降低β-淀粉样蛋白诱导的活性氧中间体在细胞内的累积和PC12细胞凋亡[47]。白藜芦醇治疗APP转基因Tg19959型老鼠,减少了淀粉样蛋白的形成,而上述均不会影响APP水平[48]。与研究相一致,侧脑室注射白藜芦醇可减少海马中的神经退行性疾病并可改善P25基因诱导的转基因小鼠(AD模型体)的学习功能障碍[47]。于转基因小鼠海马体内注射SIRT1,证实了SIRT1诱导的神经保护作用[49]。SIRT1抑制剂似乎也能起神经保护作用。

2.6植物中提取的姜黄素姜黄素是一种多酚类化合物,具有抗氧化、降血脂、抗肿瘤等多种生物活性。近年来,姜黄素对AD中β-淀粉样蛋白诱导的神经毒性保护作用已引起越来越多的重视。姜黄素通过抑制β-淀粉样蛋白的生成、Tau蛋白的过度磷酸化和神经细胞的凋亡,螯合脑组织中金属离子、抑制胞内钙离子水平和抗炎、抗氧化等方式对AD诱导的神经毒性起保护作用;姜黄素的作用方式具有多靶向、多途径的特点,且自身毒性极小[50]。

3小结

天然多酚类化合物在治疗AD的领域里起重要作用。多酚类化合物是否可影响到新的靶点,值得深入研究。作为一种药物,天然化合物的生物利用度是一个关键的考虑因素。目前缺乏相关多酚类的药动学数据,希望通过更透彻的研究及分析,能研发出更有效、更安全的药物。这将为AD等神经退行性疾病的预防及临床治疗带来新的突破。

参考文献

[1]Lovell MA,Markesbery WR.Oxidative damage in mild cognitive impairment and early Alzheimer′s disease[J].Neurosci Res,2007,85(14):3036-3040.

[2]Müller WE,Eckert A,Kurz C,etal.Mitochondrial dysfunction:common final pathway in brain aging and Alzheimer′s disease-therapeutic aspects[J].Mol Neurobiol,2010,41(2/3):159-171.

[3]Butterfield DA,Reed T,Newman SF,etal.Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer′s disease and mild cognitive impairment[J].Free Radic Biol Med,2007,43(5):658-677.

[4]Mecocci P,Polidori MC,Cherubini A,etal.Lymphocyte oxidative DNA damage and plasma antioxidants in Alzheimer disease[J].Arch Neurol,2002,59(5):794-798.

[5]Minghetti L,Greco A,Puopolo M,etal.Peripheral reductive capacity is associated with cognitive performance and survival in Alzheimer′s disease[J].J Neuroinflammation,2006,3:4.

[6]Craft JM,Watterson DM,Van Eldik LJ.Neuroinflammation:a potential therapeutic target[J].Expert Opin Ther Targets,2005,9(5):887-900.

[7]Wang J,Ho L,Zhao W,etal.Grape-derived polyphenolics prevent Abeta oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer′s disease[J].J Neurosci,2008,28(25):6388-6392.

[8]Dumont M,Beal MF.Neuroprotective strategies involving ROS in Alzheimer′s disease[J].Free Radic Biol Med,2011,51(5):1014-1026.

[9]Kim J,Lee HJ,Lee KW.Naturally occurring phytochemicals for the prevention of Alzheimer′s disease[J].J Neurochem,2010,112(6):1415-1430.

[10]Graham HN.Green tea composition,consumption,and polyphenol chemistry[J].Prev Med,1992,21(3):334-350.

[11]Singh M,Arseneault M,Sanderson T,etal.Challenges for research on polyphenols from foods in Alzheimer′s disease:bioavailability,metabolism,and cellular and molecular mechanisms[J].J Agric Food Chem,2008,56(13):4855-4873.

[12]Assunζão M,Santos-Marques MJ,Carvalho F,etal.Chronic green tea consumption prevents age-related changes in rat hippocampalformation[J].Neurobiol Aging,2011,32(4):707-717.

[13]Lee JW,Lee YK,Ban JO,etal.Green tea(-)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice[J].J Nutr,2009,139(10):1987-1993.

[14]Haque AM,Hashimoto M,Katakura M,etal.Green tea catechins prevent cognitive deficits caused by Abeta1-40 in rats[J].J Nutr Biochem,2008,19(9):619-626.

[15]Guedj F,Sebrie C,Rivals I,etal.Green tea polyphenols rescue of brain defects induced by overexpression of DYRK1A[J].PLoS One,2009,4(2):e4606.

[16]Mandel SA,Amit T,Weinreb O,etal.Simultaneous manipulation of multiple brain targets by green tea catechins:a potential neuroprotective strategy for Alzheimer and Parkinson diseases[J].CNS Neurosci Ther,2008,14(4):352-365.

[17]Lee YJ,Lee YM,Lee CK,etal.Therapeutic applications of compounds in the Magnolia family[J].Pharmacol Ther, 2011,130(2):157-176.

[18]Cui HS,Huang LS,Sok DE,etal.Protective action of honokiol,administered orally,against oxidative stress in brain of mice challenged with NMDA[J].Phytomedicine,2007,14(10):696-700.

[19]Lin YR,Chen HH,Ko CH,etal.Neuroprotective activity of honokiol and magnolol in cerebellar granule cell damage[J].Eur J Pharmacol,2006,537(1/3):64-69.

[20]Hoi CP,Ho YP,Baum L,etal.Neuroprotective effect of honokiol and magnolol,compounds from Magnolia officinalis,on beta-amyloid-induced toxicity in PC12 cells[J].Phytother Res,2010,24(10):1538-1542.

[21]Matsui N,Takahashi K,Takeichi M,etal.Magnolol and honokiol prevent learning and memory impairment and cholinergic deficit in SAMP8 mice[J].Brain Res,2009,1305:108-117.

[22]Oh JH,Kang LL,Ban JO,etal.Anti-inflammatory effect of 4-O-methylhonokiol,compound isolated from Magnolia officinalis through inhibition of NF-kappaB[corrected][J].Chem Biol Interact,2009,180(3):506-514.

[23]Liu Z,Zhang X,Cui W,etal.Evaluation of short-term and subchronic toxicity of magnolia bark extract in rats[J].Regul Toxicol Pharmacol,2007,49(3):160-171.

[24]Francis FJ.Food colorants:anthocyanins[J].Crit Rev Food Sci Nutr,1989,28(4):273-314.

[25]Brewer GJ,Torricelli JR,Lindsey AL,etal.Age-related toxicity of amyloid-beta associated with increased pERK and pCREB in primary hippocampal neurons:reversal by blueberry extract[J].J Nutr Biochem,2010,21(10):991-998.

[26]Lau FC,Bielinski DF,Joseph JA.Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharide-activated BV2 microglia[J].J Neurosci Res,2007,85(5):1010-1017.

[27]Joseph JA,Denisova NA,Arendash G,etal.Blueberry supplementation enhances signaling and prevents behavioral deficits in an Alzheimer disease model[J].Nutr Neurosci,2003,6 (3):153-162.

[28]Guo JP,Yu S,McGeer PL.Simple in vitro assays to identify amyloid-beta aggregation blockers for Alzheimer′s disease therapy[J].J Alzheimers Dis,2010,19(4):1359-1370.

[29]Williams CM,EI Mohsen MA,Vauzour D,etal.Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels[J].Free Radic Biol Med,2008,45(3):295-305.

[30]Goyarzu P,Malin DH,Lau FC,etal.Blueberry supplemented diet:effects on object recognition memory and nuclear factor-kappa B levels in aged rats[J].Nutr Neurosci,2004,7(2):75-83.

[31]Joseph JA,Shukitt-Hale B,Willis LM.Grape juice,berries,and walnuts affect brain aging and behavior[J].J Nutr,2009,139(9):1813-1817.

[32]Marcocci L,Packer L,Droy-Lefaix MT,etal.Antioxidant action of Ginkgo biloba extract EGb 761[J].Methods Enzymol,1994,234:462-475.

[33]Longpré F,Garneau P,Christen Y,etal.Protection by EGb 761 against beta-amyloid-induced neurotoxicity:involvement of NF-kappaB,SIRT1 and MAPKs pathways and inhibition of amyloid fibril formation[J].Free Radic Biol Med,2006,41(12):1781-1794.

[34]Eckert A,Keil U,Kressmann S,etal.Effects of EGb 761 Ginkgo biloba extract on mitochondrial function and oxidative stress[J].Pharmacopsychiatry,2003,36(1):15-23.

[35]Stackman RW,Eckenstein F,Frei B,etal.Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer′s disease by chronic Ginkgo biloba treatment[J]. Exp Neurol,2003,184(1):510-520.

[36]Augustin S,Rimbach G,Augustin K,etal.Effect of a short-and long-term treatment with Ginkgo biloba extract on amyloid precursor protein levels in a transgenic mouse model relevant to Alzheimer′s disease[J].Arch Biochem Biophys,2009,481(2):177-182.

[37]Colciaghi F,Borroni B,Zimmermann M,etal.Amyloid precursor protein metabolism is regulated toward alpha-secretase pathway by Ginkgo biloba extracts[J].Neurobiol Dis,2004,16(2):454-460.

[38]Sharma HS,Drieu K,Alm P,etal.Role of nitric oxide in blood-brain barrier permeability,brain edema and cell damage following hyperthermic brain injury.An experimental study using EGB-761 and Gingkolide B pretreatment in the rat[J].Acta Neurochir Suppl,2000,76:81-86.

[39]Smith PF,Maclennan K,Darlington CL.The neuroprotective properties of the Ginkgo biloba leaf:a review of the possible relationship to plateletactivating factor (PAF)[J].J Ethnopharmacol,1996,50(3):131-139.

[40]Leifert WR,Abeywardena MY.Cardioprotective actions of grape polyphenols[J].Nutr Res 2008,28(11):729-737.

[41]Monagas M,Gómez-Cordovés C,Bartolomé B,etal.Monomeric,oligomeric,and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L.Cv.Graciano,Tempranillo, and Cabernet Sauvignon[J].J Agric Food Chem,2003,51(22):6475-6481.

[42]Mullen W,Marks SC,Crozier A.Evaluation of phenolic compounds in commercial fruit juices and fruit drinks[J].J Agric Food Chem,2007,55(8):3148-3157.

[43]Ono K,Condron MM,Ho L,etal.Effects of grape seed-derived polyphenols on amyloid beta-protein selfassembly and cytotoxi-city[J].J Biol Chem,2008,283(47):32176-32187.

[44]Janle EM,Lila MA,Grannan M,etal.Pharmacokinetics and tissue distribution of 14C-labeled grape polyphenols in the periphery and the central nervous system following oral administration[J].J Med Food,2010,13(4):926-933.

[45]Ferruzzi MG,Lobo JK,Janle EM,etal.Bioavailability of gallic acid and catechins from grape seed polyphenol extract is improved by repeated dosing in rats:implications for treatment in Alzheimer′s disease[J].J Alzheimers Dis,2009,18(1):113-124.

[46]Jang JH,Surh YJ.Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death[J].Free Radic Biol Med,2003,34(8):1100-1110.

[47]Karuppagounder SS,Pinto JT,Xu H,etal.Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer′s disease[J].Neurochem Int,2009,54(2):111-118.

[48]Kim D,Nguyen MD,Dobbin MM,etal.SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer′s disease and amyotrophic lateral sclerosis[J].EMBO J,2007,26(13):3169-

3179.

[49]Ramassamy C.Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases:a review of their intracellular targets[J].Eur J Pharmacol,2006,545(1):51-64.

[50]张莉莉,查晓明,楼影涵,等.姜黄素对阿尔茨海默病中A13诱导的神经毒性保护作用的研究进展[J].亚太传统医药,2012,8(8):199-201.

The Natural Phenolic Antioxidant Components and Its Potential in Treatment of Alzheimer DiseaseRaziyaAmat,ZulpiyaOsman,NurmuhammaAmat.(TraditionalUighurMedicineInstitute,XinjiangMedicalUniversity,Urumqi830011,China)

Abstract:Alzheimer disease (AD) is the most prevalent neurodegenerative disease.However,there is no known way to halt or cure the neurodegenerative disease.Oxidative stress is a main hallmark of the disease and has been considered as the therapeutic target for AD treatment.Dietary polyphenolic compounds exhibit neuroprotective effects through scavenging free radicals and increasing antioxidant capacity.Furthermore,they could facilitate the endogenous antioxidant system by stimulating transcription.Here is to make a review of the causes of oxidative stress in AD patients′ brains,and describe antioxidant neuroprotective effects and therapeutic potential of natural polyphenolic compounds for AD.

Key words:Alzheimer disease; Polyphenols; Antioxidant; Treatment

收稿日期:2014-05-28修回日期:2014-10-08编辑:郑雪

基金项目:国家自然科学基金 (81260565);教育部新世纪优秀人才支持计划项目(NCET-11-1073);乌鲁木齐市科技局科技计划项目(H121323001)

doi:10.3969/j.issn.1006-2084.2015.09.001

中图分类号:R741.05

文献标识码:A

文章编号:1006-2084(2015)09-1537-04

猜你喜欢
阿尔茨海默病抗氧化剂治疗
塑料包装中3种抗氧化剂测定的不确定度评定
抗氧化剂,天使还是魔鬼
基于内容分析法对阿尔茨海默病患者居家照护概念的解析
琐琐葡萄多糖对阿尔茨海默病模型大鼠行为学和形态学的影响
HSP70敲低对AD转基因果蝇的神经保护作用
功能磁共振成像在轻度认知障碍患者中的应用研究进展
62例破伤风的诊断、预防及治疗
1例急性肾盂肾炎伴有胡桃夹综合征保守治疗和护理
新生儿惊厥的临床诊断及治疗研究
白藜芦醇对酒精性氧化损伤修复作用研究