王宇竞(综述),敖敏高娃,刘恩才(审校)
(呼伦贝尔市人民医院检验科,内蒙古呼伦贝尔021008)
众所周知,缺氧是恶性实体肿瘤的重要生物学特征之一,与肿瘤的生长、侵袭、凋亡密切相关。肿瘤组织氧浓度显著低于周围其他正常组织,例如,在乳腺肿瘤中,平均氧分压大约为10 mmHg(1 mmHg=0.133 kPa),而在正常乳腺组织氧分压大约为60 mmHg[1]。缺氧时,通过对氧分压敏感基因的调控来改变肿瘤细胞的表型。而缺氧诱导因子1(hypoxia inducible factor 1,HIF1)在此过程中起重要作用。低氧除能干扰正常细胞新陈代谢外,还会导致缺氧相关基因失调,这种失调可产生大量致癌因素,包括肿瘤细胞的转化、入侵和转移、化疗和放疗治疗抵抗[2]。微 RNAs(microRNAs,miRNAs)是一类内源性的,由18~24个核苷酸组成的非编码的小RNA分子,其在转录翻译水平调节真核生物的基因表达。它们广泛参与许多正常的和病理的细胞过程,参与转录后基因调控,与细胞分化、代谢和癌变、临床分期及预后密切相关[3]。在众多的研究中已经证实,miRNAs在肿瘤发生过程中所起的作用类似于致癌基因和抑癌基因的功能。然而,对于miRNAs在恶性疾病中所扮演的角色并不是十分了解。特别指出的是,对于肿瘤微环境下miRNAs与缺氧是如何相互作用的缺乏相关明确研究。近期一些研究表明,miRNAs的几个关键的信号通路与低氧反应相关联,并为适应低氧环境发挥了重要作用。现对这些缺氧条件下miRNAs与肿瘤相关性进行综述,说明miRNAs与低氧之间的相互作用机制,以便更好地理解其在肿瘤发生中的作用。
以往研究已经通过芯片法发现一些miRNAs对于缺氧的差异性表达,此类miRNAs称为缺氧调节miRNAs(hypoxia regulator miRNAs,HRMs)。例如miR-210、miR-155、miR-372/373、miR-10b、miR-185-3P 和 miR-216a-5P认为是上调的 miRNAs,而miR-20b、miR-200b、miR-625-5P是 下 调 的 miRNAs[4-13]。 除 了HRMs miR-210外,其他大部分HRMs缺少相关表型一致性的研究,这种缺乏一致性的研究可能归因于技术变量因素,包括敏感性筛选方法中所述的持续时间和缺氧严重程度的划分[14]。除外种类繁多的miRNA表达谱平台外,研究认为,对于miRNA的检测缺乏适当的标准化的方法,也是造成miRNA测量误差的重要原因[15-19]。目前为止,大约有3000种人类miRNA被命名,而大部分用于miRNA的分析方法均建立在这样的假设情况下,即该芯片技术标准化方法所用的阵列探针数足够大(>5000),并能够获得高通量的结果,但事实上,信息量大并不等同于质量高。因此显然目前建立的方法不能满足miRNA表达谱的分析要求,如miR-210-3P仅通过微阵列平台不能检测到,需要即时聚合酶链反应可探测到[5],所以除外有具体的标准化检测作业体系外,从阵列数据库中准确、有效地识别出有功能的 HRMs也十分重要。自从 Kulshreshtha等[20]在2007年第1次报道miRNA可被缺氧诱导后,随后其他大量关于HRMs的研究也相继展开。目前已知报道的缺氧诱导上调的 miRNAs 如 下:miR-10b,miR-152,miR-191,miR-206,miR-224,miR-103,miR-155,miR-193b,miR-21,miR-23,miR-107,miR-125a,miR-181b,miR-188,miR-203,miR-205,miR-210,miR-213,miR-24,miR-26,miR-27,miR-30a-5p,miR-30c,miR-30d,miR-322,miR-333,miR-335,miR-339,miR-373,miR-451,miR-491,miR-497,miR-185-3P,miR-216a-5P。下调的 miRNAs 有 miR-22,miR-25,miR-30,miR-424,miR-449,miR-489,let-7f,miR-128b,miR-150,miR-159,miR-17-92,miR-181d, miR-196a, miR-196b, miR-199a, miR-199b,miR-200a,miR-200b,miR-20b,miR-625-5P。
缺氧反应原件(hypoxic response element,HRE)位于HRM启动子区,能与HIF1的α和β亚基结合,同时缺氧又增强此复合物的亲和力,继而促使 HRM转录。许多 HRMs,miR-210,miR-155,miR-373,已被证实含有 HRE,并通过 HIF1调节 HRMs 的表达[4,6,11]。
类似于蛋白编码基因,miRNA的转录也同样遵循RNA聚合酶参与的传统转录机制,因而转录因子在调节miRNA表达中起决定作用。如TWIST、过氧化物增殖物激活受体γ和转录因子GATA1在转录水平均可被HIF1所调节[21-23],其结果是,HIF1可以通过这些转录因子参与miRNA表达调控。例如,在低氧时HIF1参与调控下,TWIST可诱导上调miR-10b。miR-10b是一个众所周知的介导不同种人类癌症转移的致癌miRNA[8]。相反,Lei等[12]发现敲除HIF1后导致miR-20b表达增加,同时Chan等[13]则报道miR-200b表达则降低。由低氧激活的复杂性分子铰链机制中,miRNA不仅直接受缺氧调控,还能调节缺氧相关基因的表达。例如,Kelly等[24]发现缺氧诱导miR-210抑制甘油醛-3-磷酸脱氢酶1表达,进而通过降低超羟化稳定HIF1α的表达,同理cullin2,泛素连接酶系统的一个支架蛋白,可以被miR-424所抑制。假设缺氧能诱导人类内皮细胞中miR-424表达,cullin2的表达下降则可能稳定 HIF1α[25]。因此在低氧诱导的HRMs中,一些miRNAs靶基因通过形成正反馈环稳定HIF1,此外一些缺氧下调的HRMs,如miR-18a、miR-20b、miR-199、miR-17-92则通过直接靶向作用抑制HIF1表达[26-29]。Brunning等[6]也研究指出在体内和体外模型中,缺氧诱导的miR-155可能对HIF1α的稳定性和活性有负面作用。另外,一些非HRMs,miR-519c和miR-107分别以HIF1α和HIF1β为靶位点。目前,HIF2作为另一种重要的亚基,在缺氧方面已广泛研究,但很少有报道HIF2与miRNA之间的关联性。最新研究表明,含有3-非编码区的 HIF-3α包含miR-485-5P和miR-210-3P的靶点,并因缺氧而表达上调[5]。除HIF1外,其他基因和信号通路也可能有助于增加肿瘤细胞对缺氧的适应性。如缺氧可经由AKT2依赖性过程诱导miR-21,由AKT2转导的低氧诱导信号能提高核因子κB和环磷腺苷效应原件结合蛋白活性,继而转录上调miR-21的表达[29]。缺氧还参与 miRNA的生物源性,蛋白 Argonaute2(Ago2)是RNA诱导沉寂复合物的核心元件,而Ago2蛋白羟化是Ago2蛋白聚集成RNA诱导沉寂复合物中的热激蛋白90的关键一步。以往研究表明低氧能增加Ⅰ型胶原脯氨酸-4-羟化酶水平,这可能导致脯氨酸羟基化和Ago2的累积,因此通过任意HIF1独立或依赖途径均可增加Ago2核酸内切酶活性[30-31]。
血管生成是通过组织重塑的高度协调导致新生血管生成,缺氧区域通过促血管生成因子诱导血管生成[32-33]。当细胞缺氧时,HIF1通过转录调控机制上调多种血管因子生成,包括血管内皮生长因子(vascular endothelial growth factor,VEGF)和血管生成素2,基质细胞衍生因子和干细胞因子[32-35]。这些因子与血管内皮与平滑肌细胞表面的特殊受体结合时,在原有血管上开始有新生毛细血管生成,而血管生成对于肿瘤生长和转移具有重要作用。近期研究揭示,特殊的HRMs在血管生成调控中具有辅助作用,研究指出miR-210以酪氨酸激酶的配体肝配蛋白A3为靶点,并促进人脐静脉内皮细胞分化[36]。同时缺氧诱导miR-424通过靶基因CUL2促进血管生成,CUL2是支架蛋白泛素连接酶系统的关键组成成分,这个过程稳定了 HIF1α活性,并同时转录激活VEGF[25]。相反的,miR-20b则通过VEGF和HIF1α对血管生成有负向调节作用[12,37]。在低氧环境下,miR-20b 经由HIF1α使miR-20b表达下调,并减弱对VEGF和HIF1α的抑制作用。这种miR-20b、HIF1α和VEGF之间的相互调节作用可使肿瘤细胞适应不同的缺氧浓度[12,37]。此外,miR-519c也直接以HIF1α为靶点抑制血管生成,miR-21也已证实能够以抑癌基因为靶点,激活 AKT2和 ERK1/2信号通路,继而HIF1α和VEGF表达增加,以诱导肿瘤血管生成[38]。在体外培养的富含miR-200b的人微血管内皮细胞模型中,表现出抑制血管生长反应性的特性,相反在miR-200b缺乏的人微血管内皮细胞模型中则出现血管生成反应性升高的特性,而氧含量不足和HIF1α稳定的活性亦可抑制miR-200b的表达[13]。此外,缺氧环境下miR-107表达下调则可促进肿瘤血管生成,其原因可能是由于miR-107对HIF1α抑制减少造成的[39]。
miR-210基因被证实抑制E2F3和MNT表达。E2F3属于E2F家族,是通过影响G1/S期所需DNA合成控制细胞周期的进程。MNT是已知c-myc的拮抗剂,参与细胞周期的调控和增殖。通过诱导miR-210使MNT表达抑制,进而加快G1/S期转换,促进肿瘤细胞增殖[40]。因此,缺氧诱导miR-210可能参与肿瘤细胞的一些重要的细胞过程。
当氧水平不足时,细胞新陈代谢由线粒体的氧化磷酸化转变为糖酵解形式,同时HIF1可能参与对新陈代谢水平改变起关键作用的激酶和酶的诱导。研究表明,miRNA-126以胰岛素受体底物1为靶基因,抑制恶性间皮瘤并妨碍线粒体功能[41]。最近一些研究小组也已证实miR-210通过抑制线粒体代谢中若干个步骤,特别是电子传递链复合物来协助这种代谢转变[42-45]。miR-210以铁硫簇同源支架和细胞色素C氧化酶聚集因子为靶点抑制线粒体呼吸。此外,miR-210还以在细胞代谢中起重要作用的还原型烟酰胺腺嘌呤二核苷酸脱氢酶(辅酶)1α-复型4(NDUFA4)和琥珀酸复合物以及GDP-1为靶点[44],参与细胞代谢。
Ma等[46]在近期在对前列腺癌细胞的研究中指出缺氧诱导的自噬作用在一定程度上受控于miR-96,miR-96能通过哺乳动物雷帕霉素靶蛋白或自噬相关蛋白7起到抑制或促进自噬的作用。而此相反作用取决于miR-96的表达水平:miR-96通过抑制雷帕霉素靶蛋白而刺激自噬,当抑制miR-96时会消除缺氧诱导的自噬;相反高表达的miR-96则通过抑制自噬相关蛋白7来抑制自噬。而自噬作用在肿瘤中则使肿瘤细胞失去活力,从而抑制肿瘤的生长。此外,Fasanaro等[36]发现在正常和缺氧条件下,以肝配蛋白A3为靶基因的miR-210抑制内皮细胞凋亡,另外 Kim等[47]发现miR-210表达凋亡组分CASP8AP2通过缺血预处理可以增加间充质干细胞的存活性。近期发现,miR-497是一种与细胞凋亡相关的miRNAs。在缺氧的环境下,神经胶质瘤细胞中,过表达的miR-497通过程序性细胞凋亡因子4对因缺氧诱导的细胞凋亡表现出保护性机制[48]。其他研究也表明miR-21可能通过人第10号染色体缺失的磷酸酶及张力蛋白同源基因和Fas配体调节细胞凋亡[49]。
Ying等[50]报道在肝细胞癌细胞中,缺氧诱导的miR-210可促进肝细胞癌转移。液泡膜蛋白1被确定为miR-210的直接靶基因,在缺氧条件下,液泡膜蛋白1的下调与肝细胞癌细胞的转移有关。Chen等[51]发现缺氧时,miR103/107在结肠肿瘤细胞中表达升高,并抑制了肿瘤转移的抑制物-凋亡相关蛋白酶和Kruppel样因子。Loayza-Puch等[11]研究指出,在缺氧条件下,miR372/373通过HIF1α和TWIST的转录调节和表达上调,而 miR-210则通过 RAS/ERK信号上调,这些HRMs相继降低膜锚定金属蛋白酶调节物RECK基因表达,而RECK则是肿瘤细胞转移的抑制物。缺氧是肿瘤微环境的标志,缺氧与抗癌疗法中放/化疗相关已经明确。但是在缺氧条件下,癌细胞如何抵抗抗癌治疗的机制还不十分明确。Gee等[52]通过大量数据说明miRNAs是肿瘤适应低氧反应的重要成分,超表达的miR-210,典型的缺氧相关基因转与肿瘤的不良预后相关。通过反义基因疗法,稳定转染的miR-210反义寡核苷酸能显著增强人肝癌细胞对放射性的敏感性,从而抑制细胞增殖和促进细胞凋亡。如前所述,神经胶质瘤细胞中,异常过表达miR-497以程序性细胞凋亡因子4为靶基因增强对化疗药物的抵抗性,相反,抑制其会促进肿瘤细胞的凋亡,并提高神经胶质瘤细胞对 TMZ的敏感性[48]。因此HRMs可能成为未来放/化疗治疗中关键的生物标志物和治疗靶点。
虽然目前有许多关于缺氧和人类癌症的报道,但缺氧对于生理学和病理生理学上的调节机制还知之甚少。而对于miRNAs的研究有望揭示缺氧条件下的调节机制,原因有:①细胞水平上,miRNAs通过转录和翻译调节对由缺氧引起的压力反应快速响应;②miRNAs能同时调节大量基因并影响到多个组件的信号通路。因此,针对未来HRMs的研究,可能侧重于以下几个方面:①新的HRMs的发现及其靶基因的识别;②验证新发现的HRMs及其在缺氧条件下的功能;③以HRMs为靶位点的新型治疗和预防药物的发展。近期人类癌症中关于缺氧调节miRNAs的研究,以及癌症微环境中miRNAs所扮演调节角色的阐述会对今后抗癌药物的发展有所帮助。
[1]Marxsen JH,Schmitt O,Metzen E,et al.Vascular endothelial growth factor gene expression in the human breast cancer cell line MX-1 is controlled by O2availability in vitro and in vivo[J].Ann Anat,2001,183(3):243-249.
[2]Semenza GL.HIF-1 and tumor progression:pathophysiology and therapeutics[J].Trends Mol Med,2002,8(4 Suppl):S62-67.
[3]Greco S,Martelli F.MicroRNAs in Hypoxia Response[J].Antioxid Redox Signal,2014,21(8):1164-1166.
[4]Huang X,Ding L,Bennewith KL,et al.Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation[J].Mol Cell,2009,35(6):856-867.
[5]Gits CM,van Kuijk PF,de Rijck JC,et al.MicroRNA response to hypoxic stress in soft tissue sarcoma cells:microRNA mediated regulation of HIF3α[J].BMC Cancer,2014,14:429.
[6]Bruning U,Cerone L,Neufeld Z,et al.MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia[J].Mol Cell Biol,2011,31(19):4087-4096.
[7]Crosby ME,Kulshreshtha R,Ivan M,et al.MicroRNA regulation of DNA repair gene expression in hypoxic stress[J].Cancer Res,2009,69(3):1221-1229.
[8]Haque I,Banerjee S,Mehta S,et al.Cysteine-rich 61-connective tissue growth factor-nephroblastoma-overexpressed 5(CCN5)/Wnt-1-induced signaling protein-2(WISP-2)regulates microRNA-10b via hypoxia-inducible factor-1α-TWIST signaling networks in human breast cancer cells[J].J Biol Chem,2011,286(50):43475-43485.
[9]Mathieu J,Zhang Z,Zhou W,et al.HIF induces human embryonic stem cell markers in cancer cells[J].Cancer Res,2011,71(13):4640-4652.
[10]Neal CS,Michael MZ,Rawlings LH,et al.The VHL-dependent regulation of microRNAs in renal cancer[J].BMC Med,2010,8:64.
[11]Loayza-Puch F,Yoshida Y,Matsuzaki T,et al.Hypoxia and RAS-signaling pathways converge on,and cooperatively downregulate,the RECK tumor-suppressor protein through microRNAs[J].Oncogene,2010,29(18):2638-2648.
[12]Lei Z,Li B,Yang Z,et al.Regulation of HIF-1alpha and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration[J].PLoS One,2009,4(10):e7629.
[13]Chan YC,Khanna S,Roy S,et al.miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells[J].J Biol Chem,2011,286(3):2047-2056.
[14]Chan SY,Loscalzo J.MicroRNA-210:a unique and pleiotropic hypoxamir[J].Cell Cycle,2010,9(6):1072-1083.
[15]Huang X,Le QT,Giaccia AJ.MiR-210--micromanager of the hypoxia pathway[J].Trends Mol Med,2010,16(5):230-237.
[16]Wang B,Howel P,Bruheim S,et al.Systematic evaluation of three microRNA profiling platforms:microarray,beads array,and quantitative real-time PCR array[J].PLoS One,2011,6(2):e17167.
[17]Wang B,Wang XF,Howell P,et al.A personalized microRNA microarray normalization method using a logistic regression model[J].Bioinformatics,2010,26(2):228-234.
[18]Wang B,Wang XF,Xi Y.Normalizing bead-based microRNA expression data:a measurement error model-based approach[J].Bioinformatics,2011,27(11):1506-1512.
[19]Wang B,Zhang SG,Wang XF,et al.Testing for differentiallyexpressed microRNAs with errors-in-variables nonparametric regression[J].PLoS One,2012,7(5):e37537.
[20]Kulshreshtha R,Ferracin M,Wojcik SE,et al.A microRNA signature of hypoxia[J].Mol Cell Biol,2007,27(5):1859-1867.
[21]Yang MH,Wu MZ,Chiou SH,et al.Direct regulation of TWIST by HIF-1alpha promotes metastasis[J].Nat Cell Biol,2008,10(3):295-305.
[22]Krishnan J,Suter M,Windak R,et al.Activation of a HIF1alpha-PPARgamma axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy[J].Cell Metab,2009,9(6):512-524.
[23]Zhang FL,Shen GM,Liu XL,et al.Hypoxia-inducible factor 1-mediated human GATA1 induction promotes erythroid differentiation under hypoxic conditions[J].J Cell Mol Med,2012,16(8):1889-1899.
[24]Li X,Gao L,Cui Q,et al.Sulindac inhibits tumor cell invasion by suppressing NF-κB-mediated transcription of microRNAs[J].Oncogene,2012,31(48):4979-4986.
[25]Ma L.Role of miR-10b in breast cancer metastasis[J].Breast Cancer Res,2010,12(5):210.
[26]Taguchi A,Yanagisawa K,Tanaka M,et al.Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster[J].Cancer Res,2008,68(14):5540-5545.
[27]Rane S,He M,Sayed D,et al.Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes[J].Circ Res,2009,104(7):879-886.
[28]Krutilina R,Sun W,Sethuraman A,et al.MicroRNA-18a inhibits hypoxia-inducible factor 1-alpha activity and lung metastasis in basal breast cancers[J].Breast Cancer Res,2014,16(4):R78.
[29]Polytarchou C,Iliopoulos D,Hatziapostolou M,et al.Akt2 regulates all Akt isoforms and promotes resistance to hypoxia through induction of miR-21 upon oxygen deprivation[J].Cancer Res,2011,71(13):4720-4731.
[30]Wu C,So J,Davis-Dusenbery BN,et al.Hypoxia potentiates microRNA-mediated gene silencing through posttranslational modi-fication of Argonaute2[J].Mol Cell Biol,2011,31(23):4760-4774.
[31]Hofbauer KH,Gess B,Lohaus C,et al.Oxygen tension regulates the expression of a group of procollagen hydroxylases[J].Eur J Biochem,2003,270(22):4515-45122.
[32]Forsythe JA,Jiang BH,Iyer NV,et al.Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1[J].Mol Cell Biol,1996,16(9):4604-4013.
[33]Simon MP,Tournaire R,Pouyssegur J.The angiopoietin-2 gene of endothelial cells is up-regulated in hypoxia by a HIF binding site located in its first intron and by the central factors GATA-2 and Ets-1[J].J Cell Physiol,2008,217(3):809-818.
[34]Ceradini DJ,Kulkarni AR,Callaghan MJ,et al.Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1[J].Nat Med,2004,10(8):858-864.
[35]Kelly BD,Hackett SF,Hirota K,et al.Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1[J].Circ Res,2003,93(11):1074-1081.
[36]Fasanaro P,D'Alessandra Y,Di Stefano V,et al.MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3[J].J Biol Chem,2008,283(23):15878-15883.
[37]Cascio S,D'Andrea A,Ferla R,et al.miR-20b modulates VEGF expression by targeting HIF-1 alpha and STAT3 in MCF-7 breast cancer cells[J].J Cell Physiol,2010,224(1):242-249.
[38]Liu LZ,Li C,Chen Q,et al.MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression[J].PLoS One,2011,6(4):e19139.
[39]Yamakuchi M,Lotterman CD,Bao C,et al.P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis[J].Proc Natl Acad Sci U S A,2010,107(14):6334-6339.
[40]Zhang Z,Sun H,Dai H,et al.MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT[J].Cell Cycle,2009,8(17):2756-2768.
[41]Tomasetti M,Nocchi L,Staffolani S,et al.MicroRNA-126 suppresses mesothelioma malignancy by targeting IRS1 and interfering with the mitochondrial function[J].Antioxid Redox Signal,2014,21(15):2109-2125.
[42]Chan SY,Zhang YY,Hemann C,et al.MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the ironsulfur cluster assembly proteins ISCU1/2[J].Cell Metab,2009,10(4):273-284.
[43]Fasanaro P,Greco S,Lorenzi M,et al.An integrated approach for experimental target identification of hypoxia-induced miR-210[J].J Biol Chem,2009,284(50):35134-35143.
[44]Favaro E,Ramachandran A,McCormick R,et al.MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU[J].PLoS One,2010,5(4):e10345.
[45]Chen Z,Li Y,Zhang H,et al.Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression[J].Oncogene,2010,29(30):4362-4368.
[46]Ma Y,Yang HZ,Dong BJ,et al.Biphasic regulation of autophagy by miR-96 in prostate cancer cells under hypoxia[J].Oncotarget,2014,5(19):9169-9182.
[47]Kim HW,Haider HK,Jiang S,et al.Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2[J].J Biol Chem,2009,284(48):33161-33168.
[48]Lan J,Xue Y,Chen H,et al.Hypoxia-induced miR-497 decreases glioma cell sensitivity to TMZ by inhibiting apoptosis[J].FEBS Lett,2014,588(18):3333-3339.
[49]Sayed D,He M,Hong C,et al.MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression ofFas ligand[J].JBiolChem,2010,285(26):20281-20290.
[50]Ying Q,Liang L,Guo W,et al.Hypoxia-inducible microRNA-210 augments the metastatic potential of tumor cells by targeting vacuole membrane protein 1 in hepatocellular carcinoma[J].Hepatology,2011,54(6):2064-2075.
[51]Chen HY,Lin YM,Chung HC,et al.miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4[J].Cancer Res,2012,72(14):3631-3641.
[52]Gee HE,Ivan C,Calin GA,et al.HypoxamiRs and cancer:from biology to targeted therapy[J].Antioxid Redox Signal,2014,21(8):1220-1238.