杨春燕++张文++付薇++王小利++钟理++吴佳海
摘要 DNA链断裂在细胞中持续发生,可导致染色体重排和基因组不稳定或细胞死亡。最常见的是DNA单链断裂,单个细胞每天可成千上万次发生,会阻碍RNA/DNA 聚合酶的反应,干扰基因转录和基因组复制。如果DNA单链断裂没有得到及时修复,在基因组复制过程中会演变转变为DNA双链断裂,从而激活一系列的DNA损伤反应。在DNA的损伤修复途径中,ADP核糖基化行使了非常重要的功能,本文将详细阐述ADP核糖基化参与的具体DNA损伤修复途径。
关键词 ADP核糖基化;DNA损伤;修复
中图分类号 P361.3 文献标识码 A 文章编号 1007-5739(2015)18-0273-02
ADP-ribosylation Signaling During DNA Damage Repair
YANG Chun-yan ZHANG Wen FU Wei WANG Xiao-li * ZHONG Li WU Jia-hai
(Guizhou Institute of Prataculture,Guiyang Guizhou 550006)
Abstract DNA damage occurs continuously,and lead to chromosome rearrangements,genome instability and cell death. The commonest DNA damage is DNA single-strand breaks,which occurs tens-of-thousands each day,which can block the progression of RNA/DNA polymerases and disrupt gene transcription and genome duplication. If not rapidly repaired,SSBs can be converted into DNA double-strand breaks(DSBs)during genome duplication,eliciting a complex series of DNA damage responses. Protein ADP-ribosylation played a key role in DNA single-and double-strand break repair pathways. This paper reviewed the exactly pathways that ADP-ribosylation signaling during DNA damage repair.
Key words ADP-ribosylation;DNA damage;repair
ADP核糖基化指的是烟酰胺腺嘌呤二核苷酸中的ADP核糖基部分与某些蛋白质的氨基酸残基发生共价连接反应,从而影响蛋白质的功能。ADP核糖基化由ADP核糖转移酶(ADPRTS)来完成,动物细胞有一个很大的ADP核糖转移酶基因家族,在这个基因家族中,有的具有多聚ADP核糖基团转移活性(poly ADP ribosylation),对底物进行多聚ADP核糖基化修饰;有的具有单一ADP核糖基团转移活性(momo-ADP ribosylation),对底物进行单个ADP核糖基化修饰[1-3]。在DNA损伤过程中,可检测的多聚ADP核糖基化,多聚转移酶PARP-1占据了80%~90%。PARP-1也可以进行自身ADP核糖基化修饰,在较小程度上,也可以对其他DNA修复蛋白和组蛋白进行短暂的ADP核糖基化修饰。现将ADP参与的具体DNA损伤修复途径介绍如下。
1 ADP核糖基化与DNA单链断裂修复(SSBR)
1.1 ADP核糖基化与DNA单链断裂(SSBs)
DNA单链断裂是一种最常见的DNA损伤,与可遗传的神经变性疾病密切相关[4],SSBs可由糖氧化损伤直接产生,也可由DNA碱基切除修复(BER)或DNA拓扑异构酶1(TOP1)失活间接产生。到目前为止,PARP-1在ADPRT家族中是唯一被证明参与SSBs修复过程的[5]。PARP-1是一种核定位蛋白,在遗传稳定性、细胞抗电离辐射和烷基化损伤等方面发挥着重要功能[6-9]。PARP-1除了与其参与的DNA损伤修复过程一致的表型外,还有一些其他的表型,因为PARP-1还具有通过调整染色质结构调控基因转录的功能[10-11]。
PARP-1通过2个锌指结构域结合DNA断裂链,结合后,其活性将被迅速激活到500倍以上。这种结合是一个非常短暂的过程,因为其自ADP核糖基化会导致其从DNA链上脱离下来。多聚ADP核糖基团在几分钟内会被多聚ADP核糖水解酶降解。PARP-1与DNA断裂链的脱离有利于其他DNA修复蛋白与断裂链的结合。
1.2 ADP核糖基化与DNA单链断裂修复(SSBR)
ADP核糖转移酶的合成促进DNA单链断裂修复,比如脱氧核糖分解导致的DNA单链氧化断裂。由于这些断裂在核基因组上随机发生,需要这样的一个感受因子去发现并修复这些断裂。PARP-1促进SSBR的途径之一是通过促进XRCC1的积累来发挥功能。XRCC1可与其他的SSBR酶复合体组分直接互作,可促进SSBR酶复合体的形成并维持其稳定性。XRCC1有一个BRC保守结构域,可与核糖基化的PARP结合,因此PARP通过自ADP核糖基化来促进XRCC1和其他互作的蛋白因子在DNA断裂链的积累,从而完成修复过程[12]。
除了XRCC1的积累之外,染色质结构的调控也是PARP-1促进SSBR的途径。PARP-1可通过组蛋白ADP核糖基化,组蛋白分子伴侣、染色质重塑因子的积累来调整染色质结构,通过调控基因转录来促进SSBR过程[13-15]。endprint
2 ADP核糖基化与DNA 复制过程中的DNA损伤修复
大量证据PARP-1参与了全基因组SSBs的修复。未修复的SSBs在细胞分裂S期,会导致复制叉的解体,从而演变成DNA双链断裂(DSBs),这需要通过同源重组(HR)的方式来进行修复,大量证据表明PARP-1在该过程发挥了重要功能。在外施喜树碱(CPT)诱导SSBs或TOP1失活剂的情况下,PARP-1可阻止脊椎动物复制叉的解体。此外,在复制叉已经解体的情况下,PARP-1可引导对SSBs演变成的DSBs进行HR修复而不是不利于基因稳定遗传的NHEJ(非同源重组黏性末端结合)修复。在DT40细胞中,PART-1突变体对CPT高度敏感,这种表型可在抑制KU80和Lig4基因(参与NHEJ的相关基因)的情况下得以回复。同样,在外施PARP抑制剂的情况下,HR途径会受到抑制,这种抑制在NHEJ相关基因突变的情况下得到恢复[16]。
3 ADP核糖基化与非同源重组黏性末端结合(NHEJ)
在NHEJ途径中,主要依赖于NHEJ关键因子Ku、DNA-PKcs和Lig4,该途径又被称为传统的NHEJ(C-NHEJ)途径;除此之外,还存在另外一种A-NHEJ途径,虽然它不是最主要的NHEJ,但其在染色体重排和基因组稳定性方面同样发挥着重要功能[17-19]。
3.1 ADP核糖基化与C-NHEJ
多个证据表明,ADP核糖基化参与了NHEJ途径,比如:PARP-1可以结合DSBs,并被激活;PARP-1可与Ku、DNA-PKcs直接互作;PARP-1可以招募染色体重塑酶SMARCA5/SNF2H。但在PARP-1突变体试验中,并没有太多的证据表明PARP-1促进了C-NHEJ途径,也许PARP-1参与的是A- NHEJ途径[20]。尽管PARP-1在C-NHEJ途径中的功能未知,但在C-NHEJ过程中确实存在蛋白ADP核糖基化修饰。在参与C-NHEJ的很多蛋白,包括Ku70都存在结合单一或多聚ADP核糖基团的结构域。最近报道的APLF带有结合多聚ADP核糖基团的PBZ结构域。APLF虽然不为NHEJ所必需,但可促进这一进程[21-26]。奇怪的是,APLF参与C-NHEJ途径依赖的并不是PARP-1,而是PARP-3。PARP-3与PARP-1有诸多不同,比如它为DSBs所激活的程度不如PARP-1高。此外,它对靶蛋白多进行单一ADP核糖基修饰,而非PARP-1行使的多聚修饰方式[27-28]。
3.2 ADP核糖基化与A-NHEJ
相对于C-NHEJ途径而言,PARP-1确切地参与了A-NHEJ过程[29-31]。A-NHEJ是一种不依赖于Ku和DNA-PKcs的途径,主要包括2种方式:一种是根据DNA微同源序列利用DNA连接酶3(DNA Lig3)进行修复;另一种不依赖于DNA微同源序列利用DNA连接酶1(DNA Lig1)进行修复[32-33]。A-NHEJ可在细胞中轻易检测到,在细胞不同周期、不同发育期动态发生,尤其在G2时期达到最高值[34-36]。A-NHEJ解释了包括DSBs诱导的染色体易位、基因重排和端粒融合等多种现象[37-41]。PARP-1在A-NHEJ过程中,可能行使了招募DNA连接酶3进行DNA连接的功能,具体还有待研究。
4 展望
尽管在ADP核糖基化对DNA损伤修复的调控方面取得了大量的研究成果,但是在评价PARP在DNA修复中的功能时,PARP抑制剂的使用对试验结果的准确性造成了一定的影响,因为它在试验过程中将会导致额外的DNA损伤,这种损伤不能等价于在PARP缺失时造成的DNA损伤。同时,在DNA损伤以后,多聚ADP核糖基化的关键靶点现在仍然未知。随着质谱技术的发展,将为检测和分析多聚ADP核糖基化修饰的靶蛋白提供了强有力的工具,为揭示DNA损伤修复的奥秘提供更多的科学依据。这些研究将有助于人们了解基因突变和进化的机制。
5 参考文献
[1] M O HOTTIGER,HASSA P O,L?證SCHER B,et al.Toward a unifiednom-enclature for mammalian ADPribosyltransferases[J].Trends in Biochem Sci,2010,35:208-219.
[2] LANGELIER M F,PASCAL J M.PARP-1 mechanism for coupling DNA damage detection to poly(ADPribose)synthesis[J].Curr Opin Struct Biol,2013,23:134-143.
[3] HASSLER M,LADURNER A G.Towards a structural understanding of PARP1 acti-vation and related signalling ADPribosyl-transferases[J].Curr Opin Struct Biol,2012,22:721-729.
[4] CALDECOTT K W.Single-strand break repair and genetic disease[J].Nat Rev Genet,2008,9:619-631.
[5] SCHREIBER V,AMé J C,DOLLé P,et al.Poly(ADPribose)polymerase-2(PARP-2)is required for efficient base excision DNA repairin assoc-iation with PARP-1 and XRCC1[J].J Biol Chem,2002,277:23028-23036.endprint
[6] MURCIA G D,MURCIA J M.Poly(ADPribose)polymerase:a molecular-nick-sensor[J].Trends Biochem Sci,1994,19:172-176.
[7] FAGAGNA F A,HANDE M P,TONG W M,et al.Functions of poly(ADPribose)polymerase in controlling telomerelength and chromosomal stability[J].Nat Genet,1999,23:76-80.
[8] SIMBULAN-ROSENTHAL C M,HADDAD B R,ROSENTHAL D S,et al.Chromosomal aberrations in PARP(-/-)mice:genome stabilizationin immortalized cells by reintroduction of poly(ADPribose)polymerase cDNA[J].Proc Nat Acad Sci USA,1999,96:13191-13196.
[9] MURCIA J M,NIEDERGANG C,TRUCCO C,et al.Requirement of poly(ADPribose)polymerase in recovery from DNA damagein mice and in cells[J].Proc Nat Acad Sci USA,1997,94:7303-7307.
[10] SANDERSON R J,LINDAHL T.Down-regulation of DNA repair synthesis at DNA single-strand interruptions in poly(ADPribose)polymerase-1 deficient murinecell extracts[J].DNA Repair(Amst.),2002,1:547-558.
[11] KRAUS W J,HOTTIGER M O.PARP-1 and gene regulation:progress and puzzles[J].Mol Aspects Med,2013,34:1109-1123.
[12] CALDECOTT K W.XRCC1 and DNA strand break repair[J].DNA Repair(Amst.),2003,2:955-969.
[13] CALDECOTT K W.Mammalian single-strand break repair:mechanisms and linkswith chromatin[J].DNA Repair(Amst.),2007,6:443-453.
[14] ILES N,RULTEN S,EL-KHAMISY S F,et al.APLF(C2orf13)is a novelhuman protein involved in the cellular response to chromosomal DNA strandbreaks[J].Mol Cell Biol,2007,27:3793-3803.
[15] RULTEN S L,LEDESMA F C,GUO L,et al.APLF(C2orf13)is a novel component of poly(ADPribose)signaling in mammalian cells[J].Mol Cell Biol,2008,28:4620-4628.
[16] CHAUDHURI A R,HASHIMOTO Y,HERRADOR R,et al.Topoisome-rase I poisoning results in PARP-mediated replicationfork reversal[J].Nat Struct Mol Biol,2012,19:417-423.
[17] CHIRUVELLA K K,LIANG Z,WILSON T E.Repair of double-strand breaks by endjoining,Cold Spring Harbor Perspect[J].Biol,2013,5:a012757.
[18] KASPAREK T R,HUMPHREY T C.DNA double-strand break repair pathways,chro-mosomal rearrangements and cancer[J].Semin Cell Dev Biol,2011,22:886-897.
[19] MLADENOV E,ILIAKIS G.Induction and repair of DNA double strand breaks:theincreasing spectrum of non-homologous end joining pathways[J].Mutat Res,2011,711:61-72.
[20] IKEJIMA M,NOGUCHI S,YAMASHITA R,et al.Thezinc fingers of human poly(ADPribose)polymerase are differentially requiredfor the recognition of DNA breaks and nicks and the consequent enzymeactiva-tion. Other structures recognize intact DNA[J].J Biol Chem,1990,265:21907-21913.endprint
[21] AHEL I,AHEL D,MATSUSAKA T,et al.Poly(ADPribose)-binding zinc finger motifs in DNA repair/checkpoint proteins[J].Nature,2008,451:81-85.
[22] EUSTERMANN S,BROCKMANN C,MEHROTRA P V,et al.Solution structures of the two PBZ domains from human APLF and theirandtheir (下转第282页)
(上接第274页)
interaction with poly(ADPribose)[J].Nat Struct Mol Biol,2010,17:241-243.
[23] LI G Y,MCCULLOCH R D,FENTON A L,et al.Struc-ture and identif-ication of ADPribose recognition motifs of APLF and role in theDNA damage response[J].Proc Nat Acad Sci USA,2010,107:9129-9134.
[24] OBEROI J,RICHARDS M W,CRUMPLER S,et al.Struc-tural basis of poly(ADPribose)recognition by the multizinc binding domain ofcheck-point with forkhead-associated and RING Domains(CHFR)[J].J Biol Chem,2010,285:39348-39358.
[25] GRUNDY G J,RULTEN S L,ZENG Z,et al.APLF promotes the assem-bly and activity of non-homologous end joining pro-tein complexes[J].EMBO J,2013,32:112-125..
[26] LI S,KANNO S I,WATANABE R,et al.Polynu-cleotide kinase and aprataxin-like forkhead-associated protein(PALF)acts asboth a single-stranded DNA endonuclease and a single-stranded DNA exonu-clease and can participate in DNA end joining in a biochemical system[J].J Biol Chem,2011,286:36368-36377.
[27] LOSEVA O,JEMTH A S,BRYANT H E,et al.PARP-3 is a mono-ADPribosylase that activates PARP-1 in the absence of DNA[J].J Biol Chem,2010,285:8054-8060.
[28] COUTO C A M,WANG H Y,GREEN J C A,et al.PARP regulates nonhomologous end joining through retention of Ku at double-strand breaks[J].J Cell Biol,2011,194(3):367-375.
[29] WANG M,WU W,WU W,et al.PARP-1 and Kucompete for repair of DNA double strand breaks by distinct NHEJ pathways[J].Nucleic Acids Res,2006,34:6170-6182.
[30] AUDEBERT M,SALLES B,CALSOU P.Involvement of poly(ADPribose)polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaksrejoining[J].J Biol Chem,2004,279:55117-55126.
[31] SIMSEK D,BRUNET E,WONG S Y W,et al.DNAligase III promotes alternative nonhomologous end-joining during chromo-somal transloca-tion formation[J].PLoS Genet,2011,7:e1002080.
[32] WANG H,ROSIDI B,PERRAULT R,et al.DNAligase III as a candidate component of backup pathways of nonhomologousend joining[J].Cancer Res,2005,65:4020-4030.
[33] WU W,WANG M,WU W,et al.Repair of radiationinduced DNA double strand breaks by backup NHEJ is enhanced in G2[J].DNA Repair(Amst.),2008,7:329-338.endprint
[34] ILIAKIS G.Backup pathways of NHEJ in cells of higher eukaryotes:cell cycledependence[J].Radiother Oncol,2009,92:310-315.
[35] CHIRUVELLA K K,SEBASTIAN R,SHARMA S,et al.Time-depend-ent predominance of nonhomologous DNA end-joiningpathways during embryonic development in mice[J].J Mol Biol,2012,417:197-211.
[36] WEINSTOCK D M,BRUNET E,JASIN M.Formation of NHEJ-derived reciprocal chro-mosomal translocations does not require Ku70[J].Nat Cell Biol,2007,9:978-981.
[37] SIMSEK D,JASIN M.Alternative end-joining is suppressed by the canonical NHEJcomponent XRCC4-ligase IV during chromosomal translocation formation[J].Nat Struct Mol Biol,2010,17:410-416.
[38] BOBOILA C,JANKOVIC M,YAN C T,et al.Alternative end-joining catalyzes robust IgH locus deletions and translocationsin the combined absence of ligase 4 and Ku70[J].Proc Nat Acad Sci USA,2010,107:3034-3039.
[39] YAN C T,BOBOILA C,SOUZA E K,et al.IgH class switching and translocations use a robust non-classical end-joiningpathway[J].Nature,2007,449:478-482.
[40] SFEIR A,LANGE T D.Removal of shelterin reveals the telomere end-protectionproblem[J].Science,2012,336:593-597.
[41] ROBERT I,DANTZER F,REINA-SAN-MARTIN B.PARP1 facilitates alternative NHEJ,whereas PARP2 suppresses IgH/c-myc translocations during immunoglobulinclass switch recombination[J]. J Exp Med,2009, 206:1047-1056.endprint