张建美
摘 要: 高考主要考查学生对机械波形成过程的理解。本文推导出简谐运动的“中间时刻”和“中间位置”,帮助学生突破难点。
关键词: 简谐波 简谐运动 振动方程 中间时刻 中间位置
一、简谐运动中的“中间时刻和位置”结论
分析:如图所示,是简谐运动图像,根据简谐运动振动方程:
x=Asin■t
可推出:
四分之一周期的中间时刻是八分之一周期,即:
t=■T时,x=Asin(ω-■T)=Asin■=■A
振幅的中间位置是二分之一振幅,即:
x=■A时,即■A=Asinωt,即sinωt=■,t=■
二、运用
例1:一简谐横波沿x轴正向传播,t=0时刻的波形如图(a)所示,x=0.30m处的质点的振动图线如图(b)所示,该质点在t=0时刻的运动方向沿y轴?摇?摇 ?摇?摇(填“正向”或“负向”)。已知该波的波长大于0.30m,则该波的波长为?摇?摇 ?摇?摇m。
图(a) 图(b)
解:由图b可知,t=0时刻,该质点的位移■cm,是单个质点简谐运动的中间时刻,在下一时刻,位移大于■cm,所以该质点在t=0时刻的运动方向沿y轴正向。
由振动方程得:
y=Asin■t
即■=2sin■t,sin■t=■
因为波长大于0.30m,所以■t=■π,解得t=■T
由v=■=■得λ=0.8m
例2:一列沿x轴正方向传播的简谐横波,振幅为2cm,波速为2m/s。在波的传播方向上两质点a、b的平衡位置相距0.4m(小于一个波长),当质点a在波峰位置时,质点b在x轴下方与x轴相距1cm的位置。则( )
(A)此波的周期可能为0.6s
(B)此波的周期可能为1.2s
(C)从此时刻起经过0.5s,b点可能在波谷位置
(D)从此时刻起经过0.5s,b点可能在波峰位置
解:根据简谐横波,振幅为2cm,质点b在x轴下方与x轴相距1cm的位置,可判断出是中间位置。对AB选项,根据题意,有两种情况:
第一种情况:
t=0时,波的图像如图1,从图像得
(■+■)λ=0.4,λ=1.2m
根据T=■=■=0.6s,所以A正确。
图1
第二种情况:
t=0时,波的图像如图2,从图像得
(■+■-■)λ=0.4,λ=0.6m
根据
v=■,T=■=■=0.3s
图2
因为只有以上两种情况,所以B错误。
当T=0.6S时,如图3所示,因为波沿x轴正方向传播,上坡下振。
图3
第一次波峰:
t■=■T+■T=0.2s
第一次波谷:
t■=■T+■T+■T=0.5S
当T=0.3S时,如图3所示,因为波沿x轴正方向传播,下坡上振。
图4
第一次波峰:
t■=■T-■T+■T=0.2S
第n次波峰:
t■=0.2+0.3n
n=1时,t=0.5s
第一次波谷:
t■=■T-■T=0.05S
第n次波峰:
t■=0.05+0.3n
不论n取任何整数,t≠0.5s,所以,正确答案是ACD。
参考文献:
[1]韦民.《与名师对话》.2013年3月出版.
[2]http://ask.newclasses.org/Detail_79908.aspx.