李玥,李应洪,赵建红,孙永健,徐徽,严奉君,谢华英,马均
(四川农业大学水稻研究所/农业部西南作物生理生态与耕作重点实验室,成都611130)
缓控释氮肥对机插稻氮素利用特征及产量的影响
李玥,李应洪,赵建红,孙永健*,徐徽,严奉君,谢华英,马均*
(四川农业大学水稻研究所/农业部西南作物生理生态与耕作重点实验室,成都611130)
为探究缓控释氮肥提高机插稻氮素利用效率及增产机制,以早籼中熟常规稻中嘉早17和中籼迟熟三系杂交稻川谷优7329为材料,在150kg/hm2施氮量基础上,采用二因素裂区设计,品种为主区,副区设尿素一次性基施、尿素常规运筹、硫包膜缓控释氮肥、硝化抑制剂包膜缓控释氮肥、2种树脂包膜缓控释肥共6种氮肥处理,探究缓控释氮肥和品种对机插稻干物质量和氮素吸收、转运、利用效率及产量的影响及其互作效应.结果表明,品种间差异与氮肥管理对机插稻物质质量、氮素吸收利用及产量的影响均达到显著水平,且互作效应显著.相对于常规尿素运筹,树脂包膜缓控释氮肥能促进机插稻结实期干物质的积累、氮素的吸收及转运,穗部氮积累量提高51.83%,氮肥农学利用率提高18.71%,氮肥表观利用率提高57.97%,氮肥偏生产力及产量提高5.54%,树脂包膜氮肥对中籼迟熟杂交稻稻株氮素积累及氮素利用效率作用显著,为本试验最优的机插稻配套缓控释氮肥;而硫包膜及抑制剂包膜缓控释氮肥增产、增效均不同程度低于常规施肥,但对机插稻各器官氮素的转运有一定促进作用.此外,生育期长的中籼迟熟杂交稻不同生育时期的氮素积累量、氮转运量及最终产量均显著高于生育期短的早籼中熟常规稻.综合产量与氮素吸收、转运的表现,选用中籼迟熟杂交稻,施用加阳树脂包膜缓控释氮肥,能有效提升机插杂交稻氮素的吸收利用,促进高产形成.
缓控释氮肥;机插稻;干物质积累;氮素利用;产量
Journal of Zhejiang University(Agric.&Life Sci.),2015,41(6):673-684
SummaryIn order to reduce artificial inputs and improve the efficiency of crop production,the slow-and controlled-release nitrogen(N)fertilizer has become a research focus.However,relatively little work has been done on slow-and controlled-release N fertilizer in machine-transplanted rice.Few studies were reported on whether slow-and controlled-release N fertilizer can improve machine-transplanted rice yield and simplify thefertilization technique.Therefore,different slow-and controlled-release N fertilizers and varieties under machinetransplanted rice were set in this paper,to explore effects of slow-and controlled-release N fertilizer on N utilization characteristics and yield in machine-transplanted rice.
Two-factor split-plot design was used to explore the slow-and controlled-release N fertilizer to improve N utilization efficiency and yield increasing mechanism in machine-transplanted rice.Early-maturing indica rice Zhongjiazao 17and medium-late indica hybrid rice Chuanguyou 7329were used as trial varieties.The main plot treatments were variety types.The subplot treatments were the coated slow-and controlled-release N fertilizer with nitrification inhibitor applied before transplanting(N1),sulfur-coated slow-and controlled-release N fertilizer applied before transplanting(N2),two resin-coated slow-and controlled-release N fertilizer applied before transplanting(N3,N4),single basal application of urea(N5),and the urea application proportion of base,tillering and spike fertilizers was 5∶3∶2(N6).
The results showed significant interactions between variety types and slow-and controlled-release N fertilizers application on biomass,N accumulation,translocation and grain yield at main growth stages.The N apparent useefficiency was much improved when resin-coated slow-and controlled-release N fertilizer was applied.Besides,N accumulation of panicle,partial factor productivity of applied N,N agronomic efficiency,N apparent use efficiency and yield were increased by 51.83%,18.71%,57.97%and 5.54%compared to N6,respectively.Resin-coated slow-and controlled-release N fertilizer was the best among the slow-and controlled-release N fertilizers tested in machine-transplanted rice,which had a significant effect on N accumulation and use efficiency in medium-late indica hybrid rice.However,sulfur-coated slow-and controlled-release N fertilizer and coated slow-and controlled-release N fertilizer with nitrification inhibitor were lower than conventional fertilization in increasing yield and synergism,but they were effective for translocation of vegetative organs and N transportation efficiency.In addition,long growth period of late maturity hybrid rice Chuanguyou 7329formed sufficient panicles and structure optimization of high quality group,and the rice could fully carry out construction of source-sink and accumulation of dry matter at full heading stage.And from full heading stage to mature stage,dry matter accumulation was improved steadily,and nitrogen accumulation increased N translocation of vegetative organs during grain filling.Ultimately,the late hybrid rice was significantly higher than early-maturing rice in N accumulation,translocation and yield at different growth stages.However,the efficiency of N utilization in Chuanguyou 7329was low because of its low efficiency of the stem and leaf translocation.
In conclusion,under the experimental condition,resin-coated N fertilizer in combination with medium-late indica hybrid rice is the optimal treatment for high yield and high N use efficiency.
长期以来,施用氮肥是稳定提高水稻产量的重要措施之一.然而,我国水稻的氮肥利用率偏低,约为30%~35%,远低于世界发达国家水平[1],其主要原因是肥料施用过量,导致报酬递减;且氮肥易挥发、渗漏、硝化及反硝化[2],也是导致氮肥利用率低的又一重要原因.为解决这些问题,众多学者开展了氮肥运筹管理[3]、测土配方施肥[4]、叶色诊断[5-6]等研究,均取得了一定的成效.为了使氮素释放速率与作物的需肥规律基本一致,有效提高氮素利用及生产效率,同时达到省时省工的目的,缓控释肥的研发与应用备受关注,且已成为当前研究的热点[7-10].彭玉等[7]、Ye等[9]、郑圣先等[10]研究认为缓控释肥料供给养分的释放速度基本能与水稻生长发育的需求同步,促进了水稻氮素的吸收,提高了氮素利用效率,从而可达到增产效果.而从水稻种植方式看,社会经济的发展与农村劳动力的转移使得以往的人工种植方式已经不能适应当今社会的发展,急需轻简化的栽培措施将农民从繁重的体力劳动中解放出来;因此,水稻机械化种植已成为当代稻作技术发展的必然趋势.近几年我国机插稻技术水平已有了很大提高[11].缓控释肥作为一种新兴肥料,目前对其研究报道主要集中于传统手插稻上[7-10],而对于缓控释肥在机插稻上的研究较少.缓控释肥养分的释放是否符合不同机插稻的生长发育特性,能否进一步促进机插稻产量的提高,可否简化施肥技术等还鲜见报道.为此,本研究在课题组前期对手插稻配套缓控释氮肥研究[7]的基础上,开展了机插稻的缓控释肥配套研究,探究了缓控释氮肥和品种互作对机插稻干物质量和氮素吸收、转运、利用效率的影响及其与产量的关系,以达到进一步节约劳动力,降低生产成本,提高氮肥利用效率,获得最大经济效益的目的,为水稻机械化育插秧配套技术的应用提供理论和实践依据.
1.1 试验设计
试验于2014年在成都市温江区和林村进行.试验田耕层土壤质地为砂壤土,0~20cm土层含有机质23.52g/kg,全氮1.25g/kg,碱解氮98.65mg/kg,速效磷76.34mg/kg,速效钾106.58mg/kg.供试品种为中嘉早17(早籼中熟常规稻,生育期122 d)、川谷优7329(中籼迟熟三系杂交稻,生育期159 d).以钵体毯状秧盘(中国水稻研究所研制)旱育秧,4月11日播种,每盘播量75g(折合为标准水分含量13.5%的干谷),大田试验采用二因素裂区设计,品种为主区,氮肥运筹为副区.在施纯氮量150 kg/hm2的基础上,设6种缓控释氮肥及常规氮肥处理,并设置不施氮处理,分别为:1)硝化抑制剂缓控释肥(含氮量为46.2%,重庆健森公司生产),记为N1;2)硫包膜缓控释肥(含氮量为36.8%,江苏汉枫公司生产),记为N2;3)树脂包膜缓控释肥(含氮量为44%,山东金正大公司生产),记为N3;4)树脂包膜缓控释肥(含氮量为44%,加拿大加阳公司生产),记为N4;5)尿素一次性施作底肥,记为N5;6)尿素常规运筹[w(基肥)∶w(蘖肥)∶w(穗肥)=5∶3∶2],蘖肥于机插后7d施用,穗肥于倒4叶施用,即中嘉早17于机插后40d施用,川谷优7329于机插后57d施用,记为N6;7)不施氮肥(CK),记为N0.
5月14日用久保田SPU-68C插秧机进行机插,秧龄33d,机插行距、株距分别为30cm和16.5 cm,3次重复,各处理收获计产面积为20.8m2.w(N)∶w(P2O5)∶w(K2O)=2∶1∶2,缓控释氮肥均于机插前作底肥一次施用,磷肥(过磷酸钙)施用量折合为P2O575kg/hm2,钾肥(氯化钾)施用量折合为K2O 150kg/hm2,磷钾肥做基肥一次性施入.不同处理小区间筑埂(宽40cm,高30cm),并用塑料薄膜包裹,防止串肥串水.其他措施按大田生产管理.
1.2 测定项目与方法
1.2.1 干物质积累及植株氮含量 分别于水稻齐穗期、齐穗后15d和成熟期按每小区平均茎蘖数,取代表性稻株5穴,分茎鞘、叶片、穗部3部分,105℃杀青40min,80℃烘干至恒质量后计干物质量,之后粉碎,过80目筛,采用浓H2SO4-H2O2消煮,凯氏定氮法测定各营养器官氮含量.
茎鞘(叶片)氮素转运量=齐穗期茎鞘(叶片)含氮量-成熟期茎鞘(叶片)含氮量.
茎鞘(叶片)氮素转运率/%=[茎鞘(叶片)氮素转运量/齐穗期茎鞘(叶片)含氮量]×100.
茎鞘(叶片)的贡献率/%=[茎鞘(叶片)氮素转运量/成熟期籽粒含氮量]×100.
氮素收获指数/%=(籽粒含氮量/稻株地上部分吸氮量)×100.
氮素干物质生产效率/(kg/kg)=成熟期单位面积稻株干物质量/稻株地上部分氮积累量.
氮素籽粒生产效率/(kg/kg)=籽粒产量/施氮区稻株地上部分氮积累量.
氮肥偏生产力/(kg/kg)=施氮区籽粒产量/施氮量.
氮肥农学利用率/(kg/kg)=(施氮区籽粒产量-无氮区籽粒产量)/施氮量.
氮肥表观利用率/%=[(施氮区稻株地上部分吸氮量-无氮区稻株地上部分吸氮量)/施氮量]×100.1.2.2 有效穗数 收获前7d各处理调查具代表性稻株40穴,统计有效穗数并计算平均值.
1.2.3 考种与计产 成熟期各小区随机取10株稻(每株茎蘖数为各小区的平均茎蘖数)为一个样本,室内考种,测定穗粒数、实粒数、千粒质量,计算结实率等性状.各小区按实收株数计产.
1.3 数据分析
采用Excel 2003、DPS 13.5及SPSS 17.0软件进行统计分析和图表绘制.
2.1 缓控释氮肥对机插稻产量及其构成因素的影响
由表1可以看出,品种间差异、氮肥管理及两者间的互作对稻谷产量的影响均达到极显著水平.从不同品种上看,机插迟熟杂交稻川谷优7329产量显著高于中熟常规稻中嘉早17.在同一品种中,各氮肥管理下的稻谷产量均显著高于不施氮处理,且树脂包膜缓控释肥 (N3、N4)产量比常规施肥高5.54%,较尿素作为底肥一次性施用处理(N5)的产量高9.37%,为本试验最优的机插稻缓控释氮肥肥料;而硫包膜缓控释氮肥及硝化抑制剂缓控释氮肥处理的产量均不同程度地低于常规氮肥施用.
由表1还可以看出,除氮肥管理对籽粒千粒质量影响不显著外,机插品种间的差异与氮肥管理对水稻产量构成因素均存在显著或极显著影响,且两者对总颖花数、穗粒数及结实率存在极显著的交互效应.从氮肥管理对不同机插稻产量构成因素影响来看,除结实率外,各产量构成因子整体均值表现为树脂包膜缓控释氮肥>常规尿素施肥>硫包膜缓控释氮肥>硝化抑制剂包膜缓控释氮肥>不施氮处理.从不同机插品种对氮肥管理的响应来看,在同一氮肥管理下,虽然川谷优7329有效穗数低于中嘉早17,但其穗粒数相对较高,补偿作用显著,尤其在千粒质量上优势明显,这也是机插中籼迟熟杂交稻相对于早籼中熟常规稻在产量上的优势所在.
表1 缓控释氮肥对机插稻产量及其构成因素的影响Table 1 Effects of different N application treatments on yield and its component factors of machine-transplanted rice
2.2 缓控释氮肥对机插稻结实期干物质积累的影响
图1表明,品种与氮肥管理对结实期机插稻干物质积累均具显著影响.从不同品种上看,迟熟杂交稻川谷优7329结实期干物质积累量在各生育阶段均显著高于中熟常规稻中嘉早17,但随生育时期的推移,2个品种间的干物质量的差异逐渐减小.从不同缓控释氮肥上看,各氮肥管理下的干物质积累量均显著高于不施氮处理;而缓控释氮肥与常规施肥相比,树脂包膜缓控释氮肥(N3、N4)有利于结实期机插稻干物质的积累,但在硫包膜(N2)及硝化抑制剂包膜缓控释氮肥(N1)处理下,机插稻干物质积累均不同程度低于常规施肥处理;从树脂包膜缓控释氮肥上看,加阳树脂包膜(N4)的肥效略优于金正大树脂包膜(N3),但差异未达到统计学上的显著水平.可见,施用树脂包膜缓控释氮肥均有利于提高不同机插稻品种结实期干物质的积累.
图1 缓控释氮肥对机插稻结实期干物质积累的影响Fig.1 Effects of different N application treatments on dry matter accumulation of machine-transplanted rice during grain-filling stage
2.3 缓控释氮肥对机插稻结实期氮素积累、转运与分配的影响
2.3.1 氮素的积累 品种间差异、氮肥管理及两者间的互作对机插稻结实期各营养器官氮积累量的影响均达到极显著水平(表2).从不同品种上看,川谷优7329各营养器官氮素积累量在结实期均显著高于中嘉早17,但不同机插品种在结实期各生育阶段茎鞘、叶片、穗部氮积累量上有所差异.在机插稻茎鞘中,2个品种的氮素积累量在齐穗期差值最高,川谷优7329茎鞘氮积累量在齐穗期至齐穗后15d降幅显著,而中嘉早17在齐穗至成熟期茎鞘氮积累量降幅较为稳定;在机插稻叶片中,2个品种间的氮素积累量在齐穗期差值最高,而在齐穗后15d至成熟期的差异逐渐降低;在机插稻穗中,川谷优7329在齐穗期至齐穗15d穗部氮素积累量增幅显著,而中嘉早17在整个结实期增幅平稳,但增加幅度小于川谷优7329.表明机插迟熟杂交稻相对于中熟常规稻能进一步显著提高水稻结实期各营养器官的氮积累量.从氮肥管理对机插稻结实期各营养器官氮积累量的影响来看,整体均值表现为树脂包膜缓控释氮肥>常规尿素施肥>硫包膜缓控释氮肥>抑制剂包膜缓控释氮肥>不施氮处理.与常规尿素运筹相比,在树脂包膜缓控释氮肥处理下机插稻成熟期叶片、茎鞘和穗部平均氮素积累量分别提高48.95%、80.47%和51.83%,且树脂包膜缓控释氮肥尤其能增加结实期稻株的氮积累量,间接证实了树脂包膜缓控释氮肥能提高机插稻结实期氮肥的吸收与利用效率.
2.3.2 氮素的转运与分配 由表3可知,氮肥管理及其与品种间的交互作用对水稻不同营养器官氮素转运量及转运效率有极显著影响,而机插稻品种在茎叶氮转运量及穗氮增加量的差异达到极显著水平.机插稻结实期叶片氮转运量、转运率及氮贡献率均显著大于茎鞘.从不同品种上看,川谷优7329的茎、叶转运量和穗氮增加量均高于中嘉早17,氮转运率则相反,且氮贡献率差异不显著.在氮肥管理上,树脂包膜缓控释氮肥处理的叶片氮转运量及穗氮增加量分别比常规施肥高20.96%和9.13%,有利于结实期叶片氮的转运及穗部氮的增加;硝化抑制剂包膜缓控释氮肥处理的营养器官氮转运总量低于常规施肥.
表2 缓控释氮肥对机插稻结实期氮素积累的影响Table 2 Effects of different N application treatments on N accumulation of machine-transplanted rice during grain-filling stage kg/hm2
表3 缓控释氮肥对机插稻结实期氮素转运的影响Table 3 Effects of different N application treatments on N translocation of machine-transplanted rice during grain-filling stage
2.4 缓控释氮肥对机插稻氮素利用效率的影响
由表4可见,除氮干物质生产效率外,品种间差异与氮肥管理对机插稻结实期各营养器官氮素利用的影响均达到显著或极显著水平,且均存在极显著的互作效应.从品种上看,川谷优7329氮肥偏生产力及氮干物质生产效率比中嘉早17高7.71%和2.13%,而在氮收获指数、氮稻谷生产效率、氮肥农学利用率及表观利用率方面则比中嘉早17低,其中氮肥农学利用效率差异最大,达到40.15%,说明早籼中熟常规稻中嘉早17对于氮素的转运速率强于中籼迟熟三系杂交稻川谷优7329.从氮肥种类上看,氮干物质生产效率、氮稻谷生产效率及氮收获指数表现为不施氮处理>抑制剂包膜缓控释氮肥>硫包膜缓控释氮肥>常规施肥>树脂包膜缓控释氮肥;而氮肥偏生产力、氮肥农学利用率及表观利用率则表现出相反的趋势:与常规施肥相比,仅树脂包膜缓控释氮肥效果较好,氮肥农学利用率提高18.71%,氮肥表观利用率提高57.97%,其余缓控释氮肥处理均次于常规施肥;在不同种类缓控释氮肥中,以树脂包膜缓控释氮肥效果最佳,硫包膜次之,抑制剂包膜最低;而在树脂包膜缓控释氮肥中,加阳树脂包膜缓控释氮肥相对更符合水稻生长发育特性,提高了氮肥利用效率.
表4 缓控释氮肥对机插稻氮素利用的影响Table 4 Effects of different N application treatments on N use efficiency of machine-transplanted rice
2.5 产量及其构成因素、干物质与氮素吸收、转运及氮效率的相关性
由表5可见:结实期各生育阶段机插稻氮积累量、氮肥偏生产力及茎叶的氮转运量与干物质量、有效穗数、穗粒数及籽粒产量均呈显著或极显著正相关;而氮收获指数、氮干物质生产效率及氮稻谷生产效率与干物质量、有效穗数、穗粒数及籽粒产量表现出显著负相关;氮素利用效率与干物质量、有效穗数及籽粒产量表现为极显著正相关.表明机插稻氮素的吸收利用与干物质量及籽粒产量有着紧密的联系;在不同缓控释氮肥作用下,机插稻结实期氮素积累主要通过影响穗粒数从而影响水稻产量;叶片氮素转运对机插稻结实期干物质积累有明显的促进作用.
表5 干物质、产量及其构成因素与氮素吸收、转运及氮效率的相关系数Table 5 Correlation coefficients of N accumulation,translocation and N use efficiency with dry matter,yield and its component factors
3.1 机插稻品种与缓控释氮肥对水稻氮素吸收、转运及氮效率的影响
我国水稻品种繁多,其机械化适宜程度及氮素利用间有所差异[12-14],且吸肥规律也明显不同[15-16].而施用缓控释氮肥可显著提升水稻的氮素吸收利用效率[17-18].单玉华等[19]发现氮素干物质及籽粒生产效率在籼稻品种间的变化幅度较大,且常规籼稻变化幅度高于杂交籼稻.彭玉等[20]认为施用缓控释氮肥能有效促进稻株氮素吸收与利用,提高花后根系活力及成穗率,使得氮素在稻株中的转运畅通.本试验研究表明,迟熟杂交稻的氮素积累、转运、氮干物质生产效率及氮肥偏生产力较早籼中熟常规稻高,这与江立庚等[21]的研究结果相似;然而在氮素利用效率方面表现相反,其原因可能是品种间生育期、籽粒含氮率的差异造成的[22-23].有研究指出,基因型、生育期对水稻的氮素吸收与利用效率具有重要影响[21].Singh等[22]试验表明,在3种地力水平下,生育期不同的水稻品种氮素生理利用效率表现相对稳定,但氮素籽粒生产效率均表现为生育期长的品种小于生育期中等的品种.此外,相关研究表明,氮素分配对氮素利用效率影响也较大,茎叶氮素转运率大有利于提高氮素籽粒生产效率、氮素收获指数及氮素生理利用效率[23].在本研究中,早籼中熟常规稻茎叶氮素转运率均较迟熟杂交稻高.可见,迟熟杂交稻茎叶氮素转运速率较低,导致大量的氮素滞留在茎鞘、叶营养器官内,致使氮素利用效率降低.因此,在本研究机插早籼中熟常规稻中,中嘉早17较短的生育期影响了茎叶“源"及穗“库"的构建及干物质的积累,抑制了氮素积累总量的增加,较低的氮素积累量限制了氮素转运量的增加与再分配;而机插迟熟杂交稻川谷优7329,其较长的生育期使稻株能充分进行“源"与“库"的构建及干物质的积累,是其优势所在,且氮素积累量多提高了结实期营养器官氮素的转运量.而在缓控释氮肥种类中,树脂包膜缓控释氮肥处理的不同机插稻品种在结实期的氮素积累量较高,说明相对于其他缓控释氮肥,适宜的树脂包膜缓控释肥更能有效地满足机插稻生育后期的养分需求,充分提高了机插稻氮素的吸收积累和氮素利用效率,进而促进了机插稻各营养器官的转运与再分配;而硫包膜及硝化抑制剂缓控释氮肥在机插稻各器官氮素的转运方面也有一定的促进作用,可有效提高机插稻的氮素转运效率.
由此可见,在机插条件下,水稻氮素吸收、转运及氮效率受品种类型、氮肥种类及其互作的影响,本研究进一步补充、完善了前人的研究结果[24-27].在早籼常规稻中,缓控释氮肥对提高结实期早稻的氮素积累量起到了一定的补偿作用,且在氮素利用效率方面有一定的促进作用;在迟熟杂交稻中,缓控释氮肥对氮素积累及转运表现为促进,对提高氮素利用率的补偿作用明显.表明机插稻品种类型与缓控释肥种类间可以相辅相成,协同作用,共同促进高产形成.
3.2 机插稻品种与缓控释氮肥对干物质积累及产量的影响
水稻产量是植株群体干物质积累、分配、运输与转化的结果[28].大量研究[29-32]表明,产量与结实期干物质积累量表现为显著正相关,即结实期干物质量积累越多越有利于产量的形成.不同类型的机插稻因其生长环境不同,对自身养分和环境资源的利用不同,从而对其生长发育产生一定的影响.本试验研究表明,机插迟熟杂交稻川谷优7329的干物质积累量明显高于早籼中熟常规稻中嘉早17.其原因可能是中籼迟熟杂交稻川谷优7329生育期长,干物质积累量在齐穗期显著高于中嘉早17,形成了足够数量的有效穗数和结构优化的高质群体;而在齐穗期至成熟期干物质量稳步提升,物质生产积累多、充实量大,最终形成“源库流"协调的高产群体.陈恺林等[33]及张小翠等[34]研究表明,施用缓控释氮肥氮素供应时间长,在水稻生育后期仍可提供较多氮素,有利于结实期干物质的积累从而实现增产.本研究进一步表明,与常规施肥相比,加阳树脂包膜缓控释氮肥在机插稻生育前期仅释放一定的养分,这样既可满足机插稻前期干物质的积累,又不至于造成机插稻分蘖影响成穗及结实;在机插稻中后期,充足的养分供应有助于机插稻形成高产群体;且成熟期加阳树脂包膜处理的机插稻叶色仍较青绿,说明其充足的养分供应保证了后期功能叶仍然具有较强的光合能力,延缓了水稻衰老,并使稻穗在生育后期有足够的养分充实籽粒,从而提高稻谷产量(数据未发表).然而,硫包膜、硝化抑制剂等缓控释氮肥处理的干物质积累量均低于常规施肥,与前人研究结果[7,9-10]存在一定差异,可能是由于在机插条件下植株空间分布改变,导致其光合特性及植株根系生长的差异[35-36],最终导致各氮肥处理的机插稻干物质在各器官中的分配比例和各生育阶段干物质积累量的差异.同种树脂缓控释氮肥间也存在显著差异,因此还应加大缓控释肥的筛选、研制与应用.
此外,在本试验条件下加阳树脂包膜缓控释氮肥促进了机插杂交稻干物质的积累,形成了高产群体.而硫包膜、硝化抑制剂等缓控释氮肥对机插稻干物质积累作用效果不明显,这可能与环境因素及自身释放速率相关[31-34].而环境条件对硝化抑制剂的作用效果以及氮肥的硝化-反硝化速率的影响有待于进一步研究.
3.3 氮素吸收、转运及氮效率与干物质量、产量的关系
彭玉等[20]研究表明,在不同水氮管理模式下,人工移栽稻氮素的吸收、转运及氮素利用与干物质量及产量的形成有密切联系.本试验进一步研究证实了在不同机插品种与氮肥运筹模式下,机插稻氮素的吸收、转运及利用与干物质量、产量及其构成因素也存在着密切的联系.
相关分析表明,氮素积累、转运与干物质量、有效穗数、穗粒数及产量表现为显著的正相关.有效穗数及穗粒数对群体构建起着重要作用,足穗、重穗有利于干物质的积累,显著提高抽穗至成熟期的氮素积累量,促进花后茎鞘和叶片氮素向穗部的转运,提高水稻氮素转运效率,明显提高稻谷产量.缓控释氮肥对水稻氮素的吸收、转运均具有至关重要的作用,而氮素吸收、转运与干物质积累量、产量及其构成因素又有着密切的联系.因此,缓控释氮肥的种类筛选与水稻产量的提高密切相关.此外,不同种类的缓控释氮肥对机插稻根系生长也有较大影响,根系氮素吸收、转运及氮效率与干物质量、产量关系的影响有待进一步研究.
品种间差异与氮肥管理对机插稻干物质量、氮素吸收利用及籽粒产量的影响均达到显著水平,且存在显著的互作效应.在本试验条件下,树脂包膜缓控释氮肥优势明显,可实现机插稻产量和氮肥利用率的同步提高.在不同树脂包膜缓控释氮肥处理下,机插杂交稻氮素利用与产量形成指标间的相关性明显高于机插常规稻,尤其在结实期机插杂交稻更有利于茎叶中氮素向籽粒的转运与分配;提高稻谷生产效率及氮肥利用效率,是利用缓控释氮肥进一步实现机插杂交稻高产、氮高效利用的重要途径.
参考文献(References):
[1] 谢建昌.世界肥料使用的现状与前景.植物营养与肥料学报,1998,4(4):321-330.Xie J C.Present situation and prospects for the world’s fertilizer use.Plant Nutrition and Fertilizer Science,1998,4(4):321-330.(in Chinese with English abstract)
[2] 武志杰,李东坡,史云峰.未来的希望:环境友好智能缓/控释肥料.全国第十届新型肥料开发与应用技术交流年会暨汉枫缓释肥料国际研讨会,2005:58-65.Wu Z J,Li D P,Shi Y F.Friendly environmental intelligence slow/controlled release fertilizer:The future expectation of fertilizer.The 10th National Annual Conference of Development &Applied Technologies of Specialty Fertilizer-Hanfeng International Symposium on Slow-Release Fertilizer,2005:58-65.(in Chinese)
[3] 孙永健,孙园园,刘树金,等.水分管理和氮肥运筹对水稻养分吸收、转运及分配的影响.作物学报,2011,37(12):2221-2232.Sun Y J,Sun Y Y,Liu S J,et al.Effects of water management and nitrogen application strategies on nutrient absorption,transfer,and distribution in rice.Acta Agronomica Sinica,2011,37(12):2221-2232.(in Chinese with English abstract)
[4] 黎远文,冯兴,成美琴.测土配方施肥对水稻产量及化肥利用率的影响.南方农业,2014,8(7):25-27.Li Y W,Feng X,Cheng M Q.Effects of soil testing and fertilizer recommendation on yield and fertilizer utilization in rice.South Agronomica Science,2014,8(7):25-27.(in Chinese with English abstract)
[5] Li J W,Mei Q S,De N.Physiology and biochemistry changes of Euphorbia pulcherrima during leaf color transformation.Journal of Northeast Agricultural University:English Edition,2010,17(2):48-54.
[6] 欧立军.水稻叶色突变体的高光合特性.作物学报,2011,37(10):1860-1867.Ou L J.High photosynthetic efficiency of leaf color mutant of rice(Oryza sativa L.).Acta Agronomica Sinica,2011,37(10):1860-1867.(in Chinese with English abstract)
[7] 彭玉,马均,蒋明金,等.缓/控释肥对杂交水稻根系形态、生理特性和产量的影响.植物营养与肥料学报,2013,19(5):1048-1057.Peng Y,Ma J,Jiang M J,et al.Effects of slow/controlled release fertilizers on root morphological and physiological characteristics of rice.Plant Nutrition and Fertilizer Science,2013,19(5):1048-1057.(in Chinese with English abstract)
[8] Barros R,Isidoro D,Aragüés R.Irrigation management,N fertilization and N losses in the return flows of La Violada irrigation district(Spain).Agriculture Ecosystems &Environment,2012,155(1739):161-171.
[9] Ye Y S,Liang X Q,Chen Y X,et al.Alternate wetting and drying irrigation and controlled-release N fertilizer in lateseason rice.Field Crops Research,2013,144(6):212-224.
[10] 郑圣先,聂军,熊金英,等.控释肥料提高氮素利用率的作用及对水稻效应的研究.植物营养与肥料学报,2001,7(1):11-16.Zheng S X,Nie J,Xiong J Y,et al.Study on role of controlled release fertilizer in increasing the efficiency of nitrogen utilization and rice yield.Plant Nutrition and Fertilizer Science,2001,7(1):11-16.(in Chinese with English abstract)
[11] 谢舒,蓝峰,黎子明,等.水稻插秧机的国内外现状及发展趋势.南方农机,2009,6(6):38-40.Xie S,Lan F,Li Z M,et al.Current situation and development of rice transplanter in home and abroad.South Agricultural Machinery,2009,6(6):38-40.(in Chinese)
[12] Li X Y,Qian Q,Fu Z M,et al.Control of tillering in rice.Nature,2003,422(6932):618-621.
[13] Shinji I,Masahiko M,Tomotsugu A,et al.Suppression of tiller bud activity in tillering dwarf mutants of rice.Plant &Cell Physiology,2005,46(1):79-86.
[14] 魏海燕,张胜飞,张洪程,等.不同水稻氮利用效率基因型的物质生产与积累特性.作物学报,2007,33(11):1802-1809.Wei H Y,Zhang S F,Zhang H C,et al.Characteristics of matter production and accumulation in rice genotypes with different N use efficiency.Acta Agronomica Sinica,2007,33(11):1802-1809.(in Chinese with English abstract)
[15] 奚振邦,卞以洁,邝安琪,等.双季稻的吸肥高峰与挥发性氮肥全层施肥法的研究.土壤学报,1978,15(11):113-124.Xi Z B,Bian Y J,Kuang A Q,et al.Studies on peak nutrient uptake of double-cropping rice and the method of basal dressing with volatile nitrogen fertilizer to the whole plowed layer.Acta Pedologica Sinica,1978,15(11):113-124.(in Chinese with English abstract)
[16] 刘运武.杂交水稻氮肥施用技术的研究.土壤学报,1985,22(11):329-339.Liu Y W.Study on the application technique of nitrogen fertilizer for hybrid rice.Acta Pedologica Sinica,1985,22(11):329-339.(in Chinese with English abstract)
[17] 黄见良,李合松,李建辉,等.不同杂交水稻吸氮特性与物质生产的关系.核农学报,1998,12(2):89-94.Huang J L,Li H S,Li J H,et al.Relation between absorption characteristic and dry matter production for various hybrid rice.Journal of Nuclear Agricultural Sciences,1998,12(2):89-94.(in Chinese with English abstract)
[18] 谢春生,唐拴虎,徐培智,等.一次性施用控释肥对水稻植株生长及产量的影响.植物营养与肥料学报,2006,12(2):2177-2182.Xie C S,Tang S H,Xu P Z,et al.Effects of single basal application of controlled-release fertilizers on growth and yield of rice.Plant Nutrition and Fertilizer Science,2006,12(2):2177-2182.(in Chinese with English abstract)
[19] 单玉华,王余龙,山本由德,等.常规籼稻与杂交籼稻氮素利用效率的差异.江苏农业研究,2001,22(1):12-15.Shan Y H,Wang Y L,Yamamoto Y,et al.Genotypicdifferences of nitrogen use efficiency in various types of indica rice(Oryza sativa L.).Jiangsu Agricultural Research,2001,22(1):12-15.(in Chinese with English abstract)
[20] 彭玉,孙永健,蒋明金,等.不同水分条件下缓/控释氮肥对水稻干物质量和氮素吸收、运转及分配的影响.作物学报,2014,40(5):859-870.Peng Y,Sun Y J,Jiang M J,et al.Effects of water management and slow/controlled release nitrogen fertilizer on biomass and nitrogen accumulation,translocation,and distribution in rice.Acta Agronomica Sinica,2014,40(5):859-870.(in Chinese with English abstract)
[21] 江立庚,戴廷波,韦善清,等.南方水稻氮素吸收与利用效率的基因型差异及评价.植物生态学报,2003,27(4):466-471.Jiang L G,Dai T B,Wei S Q,et al.Genotypic differences and valuation in nitrogen uptake and utilization efficiency in rice.Chinese Journal of Plant Ecology,2003,27(4):466-471.(in Chinese with English abstract)
[22] Singh U,Ladha J K,Castillo E G,et al.Genotypic variation in nitrogen use efficiency in medium-and long-duration rice.Field Crops Research,1998,58(1):35-53.
[23] Dong G C,Wang Y L,Zhou J,et al.Characteristics of nitrogen distribution and translocation in conventional indica rice varieties with different nitrogen use efficiency for grain output.Acta Agronomica Sinica,2009,35(1):149-155.
[24] Zerulla W,Barth T,Dressel J,et al.3,4-Dimethylpyrazole phosphate(DMPP)—a new nitrification inhibitor for agriculture and horticulture:An introduction.Biology and Fertility of Soils,2001,34(2):79-84.
[25] 黄益宗,玛宗炜,张福珠.硝化抑制剂硝基吡啶在农业和环境保护中的应用.土壤与环境,2001,10(4):323-326.Huang Y Z,Ma Z W,Zhang F Z.Application of nitrapyrin in agriculture and environmental protection.Soil and Environmental Sciences,2001,10(4):323-326.(in Chinese with English abstract)
[26] Slangen J,Kerkhoff P.Nitrification inhibitors in agriculture and horticulture:A literature review.Fertilizer Research,1984,5(1):1-76.
[27] Guiraud G,Marol C.Influence of temperature on internalization kinetics with a nitrification inhibitor(mixture of dicyandiamide and ammonium thiosulphate).Biology and Fertility of Soils,1992,13(1):1-5.
[28] 唐海明,逢焕成,肖小平,等.双季稻区不同栽培方式对早稻生育期、干物质积累及产量的影响.作物学报,2014,40(4):711-718.Tang H M,Feng H C,Xiao X P,et al.Effects of different cultivation methods on growth stage,dry matter accumulation,and yield of early rice in double cropping rice field.Acta Agronomica Sinica,2014,40(4):711-718.(in Chinese with English abstract)
[29] 李敏,张洪程,杨雄,等.水稻高产氮高效型品种的物质积累与转运特性.作物学报,2013,39(1):101-109.Li M,Zhang H C,Yang X,et al.Characteristics of dry matter accumulation and translocation in rice cultivars with high yield and high nitrogen use efficiency.Acta Agronomica Sinica,2013,39(1):101-109.(in Chinese with English abstract)
[30] 魏海燕,张宏程,戴其根,等.不同水稻氮利用效率基因型的物质生产与积累特性.作物学报,2007,33(11):1802-1809.Wei H Y,Zhang H C,Dai Q G,et al.Characteristics of matter production and accumulation in rice genotypes with different N use efficiency.Acta Agronomica Sinica,2007,33(11):1802-1809.(in Chinese with English abstract)
[31] 马均,朱庆森,马文波,等.重穗型水稻光合作用、物质积累与运转的研究.中国农业科学,2003,36(4):375-381.Ma J,Zhu Q S,Ma W B,et al.Studies on the photosynthetic characteristics and accumulation and transformation of assimilation product in heavy panicle type of rice.Scientia Agricultura Sinica,2003,36(4):375-381.(in Chinese with English abstract)
[32] 吴文革,张洪程,钱银飞,等.超级杂交中籼水稻物质生产特性分析.中国水稻科学,2007,21(3):287-293.Wu W G,Zhang H C,Qian Y F,et al.Analysis on dry matter production characteristics of middle-season indica super hybrid rice.Chinese Journal of Rice Science,2007,21(3):287-293.(in Chinese with English abstract)
[33] 陈恺林,刘功朋,张玉烛,等.不同施肥模式对水稻干物质、产量及其植株中氮、磷、钾含量的影响.江西农业学报,2014,26(4):1-5.Chen K L,Liu G P,Zhang Y Z,et al.Effects of different fertilization modes on dry matter,yield,and contents of nitrogen,phosphorus,potassium in rice.Acta Agriculturae Jiangxi,2014,26(4):1-5.(in Chinese with English abstract)
[34] 张小翠,戴其根,胡星星,等.不同质地土壤下缓释尿素与常规尿素配施对水稻产量及其生长发育的影响.作物学报,2012,38(8):1494-1503.Zhang X C,Dai Q G,Hu X X,et al.Effects of slow-release urea combined with conventional urea on rice output and growth in soils of different textures.Acta Agronomica Sinica,2012,38(8):1494-1503.(in Chinese with English abstract)
[35] 董燕,王正银.缓/控释复合肥料不同形态氮素释放特性研究.中国农业科学,2006,39(5):960-967.Dong Y,Wang Z Y.Study on release characteristics of different forms of nitrogen nutrients of slow/controlled release compound fertilizer.Scientia Agricultura Sinica,2006,39(5):960-967.(in Chinese with English abstract)
[36] 李杰,张洪程,常勇,等.不同种植方式水稻高产栽培条件下的光合物质生产特征研究.作物学报,2011,37(7):1235-1248.Li J,Zhang H C,Chang Y,et al.Characteristics of photosynthesis and matter production of rice with different planting methods under high-yielding cultivation condition.Acta Agronomica Sinica,2011,37(7):1235-1248.(in Chinese with English abstract)
Effects of slow-and controlled-release nitrogen fertilizer on nitrogen utilization characteristics and yield of machine-transplanted rice.
Li Yue,Li Yinghong,Zhao Jianhong,Sun Yongjian*,Xu Hui,Yan Fengjun,Xie Huaying,Ma Jun*
(Key Laboratory of Crop Physiology,Ecology and Cultivation in Southwest,Ministry of Agriculture/Rice Research Institute,Sichuan Agricultural University,Chengdu 611130,China)
slow-and controlled-release nitrogen fertilizer;machine-transplanted rice;dry matter accumulation;nitrogen utilization;grain yield
S 223.91;S 143.1+5
A
10.3785/j.issn.1008-9209.2015.06.111
农业部作物生理生态与耕作重点实验室开放课题(201303);国家“十二五"科技支撑计划(2011BAD16B05,2012BAD04B13,2013BAD07B13);四川省科技支撑计划(2014NZ0040,2014NZ0041,2014NZ0047);四川省育种攻关专项(2011NZ0098-15).
*通信作者(Corresponding authors):孙永健(http://orcid.org/0000-0003-4713-0753),Tel:+86-28-86290303,E-mail:yongjians1980@163.com;马均(http://orcid.org/0000-0001-6103-5635),Tel:+86-28-86290303,E-mail:majunp2002@163.com
联系方式:李玥(http://orcid.org/0000-0002-7604-4945),E-mail:liyuez@163.com
2015-06-11;接受日期(Accepted):2015-09-06;< class="emphasis_bold">网络出版日期
日期(Published online):2015-11-18
URL:http://www.cnki.net/kcms/detail/33.1247.s.20151118.1812.018.html