例谈数学如何说题

2015-07-06 07:50宣进
新课程·中旬 2015年5期
关键词:解析几何数学思想

宣进

摘 要:数学说题是指在做题的基础上,阐述对习题解答时所采用的思维方式、解题策略及依据,进而总结出经验性的解题规律,让学生利用此规律能解决一类问题。也是类似于说课的一种教育教研展示和讨论活动,是说课的延续和创新,是一种深层次备课后的展示。说题的开展有利于引导教师重视对教材的例题和习题研究,充分挖掘例题、习题的功能,能更好地理解教材习题的编排意图,把握习题层次,从而有利于提高教学的针对性和有效性。

关键词:数学说题;数学思想;解析几何

数学如何说题呢?包括以下几点:

1.说题目:主要是分析题目背景、知识背景、方法背景、思想背景,即题目的出处、内容呈现的数学知识本质,并讲清题目所给出的信息:已知条件(包括隐含条件)、求解的难点及其成因、突破难点的策略等。

2.说知识考点:说题目涉及的知识点以及在教材中的地位等。说解题过程中涉及的基本数学思想方法。如转化与化归思想,分类讨论思想,数形结合的思想,函数与方程思想等。

3.说如何分析讲解:题目类型属于哪一种,是否熟悉,已知条件(包括隐含条件)有哪些及其待求结论又是什么等,尤其要说明解题的难点、程度和成因,突破难点的策略,就题论题进行思路分析、解题操作、一题多解。

4.说指导学生作答:根据要求分析学生的相关知识状况、能力状况以及学习态度等非智力因素情况,说指导学生在考试中如何才能得到更多分数,以及日后学生如何复习迎考此类题目。

5.说反思拓展:结合学情,正确把握学生现有的发展区,根据试题的发散点,拓展迁移,利用一般化、特殊化等方法,或利用类比等思想,通过对题目条件或问题进行变换,从而对题目进行变式、推广与拓展等。

下面通过一例给出具体说明:

猜你喜欢
解析几何数学思想
用几何的观点解释线性代数问题
用联系发展的观点看解析几何
例谈平面向量在解析几何中的应用