运用数学开放型习题培养学生的思维能力

2015-06-16 00:37
散文百家 2015年6期
关键词:乙队甲队绳子

张 颖

河北省辛集市田家庄乡田家庄学校

运用数学开放型习题培养学生的思维能力

张颖

河北省辛集市田家庄乡田家庄学校

开放型习题是相对有明确条件和明确结论的封闭式习题而言的,是指题目的条件不完备或结论不确定的习题。练习是数学教学重要的组成部分,恰到好处的习题,不仅能巩固知识,形成技能,而且能启发思维、培养能力。在数学练习中,适当设计一些开放型习题,可以培养学生思维的深刻性和灵活性,克服学生思维的呆板性。

一、运用不定型开放题培养学生思维的深刻性

不定型开放题,所给条件包含着答案不唯一的因素,在解题的过程中,必须利用已有的知识,结合有关条件,从不同的角度对问题作全面分析,正确判断,得出结论,从而培养学生思维的深刻性。

如,学习分数时,学生对“分率”和“用分数表示的具体数量”往往混淆不清,以致解题时在该知识点上出现错误,教师虽反复指出它们的区别,却难以收到理想的效果。在学习分数应用题后,让学生做这样一道习题:“有两根同样长的绳子,第一根截去9/10,第二根截去9/10米,哪一根绳子剩下的部分长?”此题出示后,有的学生说:“一样长。”有的学生说:“不一定。”我让学生讨论哪种说法对,为什么?学生纷纷发表意见,经过讨论,统一认识:“因为两根绳子的长度没有确定,第一根截去的长度就无法确定,所以哪一根绳子剩下的部分长也就无法确定,必须知道绳子原来的长度,才能确定哪根绳子剩下的部分长。”这时再让学生讨论:两根绳子剩下部分的长度有几种情况?经过充分的讨论,最后得出如下结论:①当绳子的长度是1米时,第一根的9/10等于9/10米,所以两根绳子剩下的部分一样长;②当绳子的长度大于1米时,第一根绳子的9/10大于9/10米,所以第二根绳子剩下的长;③当绳子的长度小于1米时,第一根绳子的9/10小于9/10米,由于绳子的长度小于9/10米时,就无法从第二根绳子上截去9/10米,所以当绳子的长度小于1米而大于9/10米时,第一根绳子剩下的部分长。

这样的练习,加深了学生对“分率”和“用分数表示的具体数量”的区别的认识,巩固了分数应用题的解题方法,培养了学生思维的深刻性,提高了全面分析、解决问题的能力。

二、运用多向型开放题培养学生思维的广阔性

多向型开放题,对同一个问题可以有多种思考方向,使学生产生纵横联想,启发学生一题多解、一题多变、一题多思,训练学生的发散思维,培养学生思维的广阔性和灵活性。

如:甲乙两队合修一条长1500米的公路,20天完成,完工时甲队比乙队多修100米,乙队每天修35米,甲队每天修多少米?

这道题从不同的角度思考,得出了不同的解法:

(1)先求出乙队20天修的,根据全长和乙队20天修的可以求出甲队20天修的,然后求甲队每天修的。算式是(1500-35伊20)÷20

(2)先求出乙队20天修的,根据乙队20天修的和甲队比乙队多修100米可以求出甲队20天修的,然后求甲队每天修的。算式是:(35伊20+100)÷20

(3)可以先求出两队平均每天共修多少米,再求甲队每天修多少米。算式是:1500÷20-35

(4)可以先求出甲队每天比乙队多修多少米,再求甲队每天修多少米。算式是:100÷20+35

(5)假设乙队和甲队修的同样多,那么两队20天共修(1500+100)米,然后求两队每天修的,再求甲队每天修的。算式是:(1500+100)÷20÷2

(6)假设乙队和甲队修的同样多,那么两队20天共修(1500+100)米,然后求甲队20天修的,再求甲队每天修的。算式是:(1500+100)÷2÷20

然后引导学生比较哪种方法最简便,哪种思路最简捷。这类题,可以给学生最大的思维空间,使学生从不同的角度分析问题,探究数量间的相互关系,并能从不同的解法中找出最简捷的方法,提高学生初步的逻辑思维能力,从而培养学生思维的广阔性和灵活性。

三、运用多余型开放题培养学生思维品质的批判性

多余型开放题,将题目中的有用条件和无用条件混在一起,产生干扰因素,这就需要在解题时,认真分析条件与问题的关系,充分利用有用条件,舍弃无用条件,学会排除干扰因素,提高学生的鉴别能力,从而培养学生思维的批判性。

如:一根绳子长25米,第一次用去8米,第二次用去12米,这根绳子比原来短了多少米?

由于受封闭式解题习惯的影响,学生往往会产生一种凡是题中出现的条件都要用上的思维定势,不对题目进行认真分析,错误地列式为:25-8-12或25-(8+12)。

做题时引导学生画图分析,使学生明白:要求这根绳子比原来短了多少米,实际上就是求两次一共用去多少米,这里25米是与解决问题无关的条件,正确的列式是:8+12。

通过引导分析这类题,可以防止学生滥用题中的条件,有利于培养学生思维的批判性,提高学生明辨是非、去伪存真的鉴别能力。

四、运用缺少型开放题培养学生思维的灵活性

缺少型开放题,按常规解法所给条件似乎不足,但如果换个角度去思考,便可得到解决。

如:在一个面积为12平方厘米的正方形内剪一个最大的圆,所剪圆的面积是多少平方厘米?

按常规的思考方法:要求圆的面积,需先求出圆的半径,根据题意,圆的半径就是正方形边长的一半,但根据题中所给条件,用小学的数学知识无法求出。换个角度来考虑:可以设所剪圆的半径为r,那么正方形的边长为2r,正方形的面积为(2r)[2] =4r[2]=12,r[2]=3,所以圆的面积是3.14伊3=9.42(平方厘米)。

还可以这样想:把原正方形平均分成4个小正方形,每个小正方形的边长就是所剪圆的半径,设圆的半径为r,那么每个小正方形的面积为r[2],原正方形的面积为4r[2],r[2]=12÷4,所剪圆的面积是3.14伊(12÷4)=9.42(平方厘米)。

通过此类题的练习,有利于培养学生思维的灵活性,提高灵活解题的能力。

解答开放型习题,由于没有现成的解题模式,解题时往往需要从多个不同角度进行思考和深索,且有些问题的答案是不确定的,因而能激发学生丰富的想象力和强烈的好奇心,提高学生的学习兴趣,调动学生主动参与的积极性。

猜你喜欢
乙队甲队绳子
移多补少
用分式方程解决工程问题
绳子够长吗
下一个字母
是甲队的吗
绳子穿冰
解开你身上的绳子
取绳子
把球灌进自家篮筐