吴 瑕, 吴凤芝, 周新刚
(1东北农业大学园艺学院, 哈尔滨 150030; 2黑龙江八一农垦大学农学院, 黑龙江大庆 163319)
分蘖洋葱伴生对番茄矿质养分吸收及灰霉病发生的影响
吴 瑕1,2, 吴凤芝1*, 周新刚1
(1东北农业大学园艺学院, 哈尔滨 150030; 2黑龙江八一农垦大学农学院, 黑龙江大庆 163319)
伴生; 番茄; 分蘖洋葱; 养分吸收; 番茄灰霉病
番茄(LycopersiconesculentumMill.)是设施栽培中最常见的果菜之一。但是,连作障碍已成为番茄生产中亟待解决的一大难题。例如,连作8年后番茄根系活力显著下降,果实品质明显变劣[1]。灰霉病是番茄设施栽培中的常见病害,严重影响番茄的产量和经济效益[2]。目前,生产中主要采用杀菌剂对番茄灰霉病进行防治。但是,杀菌剂大量且单一性使用不但会使病原物的抗药性增强,还会严重污染环境[3]。研究证实,科学合理的间套作和伴生栽培是提高土壤中矿质养分吸收[4]和降低土壤病虫害[5-7]的有效手段之一。
植物的营养抗性在各种病虫害综合防治技术中起着重要作用[8]。有研究显示植株内全锰含量直接影响小麦全蚀病的发生[9]。乔鹏等[10]证实小麦间作与单作相比显著增加不同时期小麦叶片氮、磷和钾含量,降低了各抗性小麦品种白粉病的发生程度,相对防效最高达81.49%。而植株内各种营养的“平衡”或比例,如同任何一种特殊营养的水平一样重要[11]。植物组织中养分浓度的比值是反映植株体内养分平衡状况的重要参数。例如,作物氮/钾比率与作物抗真菌和细菌病害的能力密切相关[12]。因此,植株内各种营养的“平衡”或比例和植株抗病性的关系已成为研究热点。
1.1 试验材料
试验于2012年1月至4月在东北农业大学园艺站日光温室内进行。供试番茄品种为东农708(月光),由东北农业大学番茄育种课题组提供。分蘖洋葱由黑龙江省五常市红旗社村提供。供试土壤基本化学性状为: pH 6.61(土水比为1 ∶5), EC 1.5 mS/cm(土水比为1 ∶5),有机质25.20 g/kg、 全氮1.58 g/kg、 碱解氮91.00 mg/kg、 速效磷243.43 mg/kg、 速效钾323.30 mg/kg、 交换性锰(NH4OAc-Mn)6.89 mg/kg。
1.2 试验设计
试验采用盆栽的方式,模拟田间种植。2012年1月15日播种育苗,2月10日两叶一心分苗,3月22日待番茄7叶一心定植于塑料盆(直径21 cm,高17 cm)中。将园土与腐熟猪粪(营养含量为有机质15%、 N 0.5%、 P2O50.5%、 K2O 0.4%)按体积比2 ∶1 混匀后装盆,每盆装风干土3.0 kg。试验设番茄单作、分蘖洋葱单作、分蘖洋葱与番茄伴生,其中伴生将分蘖洋葱和番茄分开取样,共3个处理,每处理3次重复,每重复10盆,随机区组排列。单作番茄每盆定植1株,伴生处理在番茄一侧距5 cm处同时定植4株分蘖洋葱。分蘖洋葱单作每盆定植4株。试验期间按番茄生长习性常规管理,不使用杀菌剂和杀虫剂,并及时进行人工除草,定期调换盆的位置。
1.3 取样方法
在番茄与分蘖洋葱伴生30 d后取样,每处理3次重复,每重复随机选4盆进行植物株高、 茎粗生长指标测定,同时对所有番茄植株进行发病率和病情指数调查。采用α-萘胺氧化法[16]测定根系活力。植株105℃杀青15 min,70℃烘干至恒重后称重。采用抖根法[17]取番茄和分蘖洋葱根际土,每重复随机选取4盆混合后作为一个土壤样本,过1 mm筛后一部分风干用于土壤养分测定,一部分4℃保存用于土壤酶活性测定。
1.4 测定方法
植株H2SO4-H2O2消煮后,全氮含量用凯氏法测定,全磷含量用钼锑抗比色法测定,全钾含量用火焰光度计法测定[18];全锰用原子吸收分光光度计测定[19]。土壤碱解氮采用碱解扩散法测定[18];速效磷采用钼蓝比色法测定[18];速效钾采用醋酸铵-火焰光度法测定[18];土壤交换态锰用原子吸收分光光度计测定[19];土壤有机质采用重铬酸钾容量滴定法测定[18];土壤pH(水 ∶土=5 ∶1)采用电位法测定[18]。土样脲酶采用苯酚-次氯酸钠比色法测定[20];脱氢酶采用TTC比色法测定[21];酸性磷酸酶采用对硝基苯磷酸盐法测定[22];多酚氧化酶采用比色法测定[20]。土壤酶采用鲜土测定,通过含水量换算成每克干土酶活单位。
1.5 病害调查
对番茄灰霉病进行调查,分级标准按农业部农药检定所指定方法[23]。
发病率(%)=发病株数/调查总株数×100
病情指数(DI)=[∑(各病级株数×该病级值)/(株数总和×发病最重级代表数值)]×100
1.6 数据处理及分析
原始数据的整理采用Microsoft Excel(Office 2003)软件,数据处理采用SAS 9.1.3软件,方差分析使用ANOVA过程(Duncan′s 新复极差法,P<0.05)。N/K,N/Mn比值方差分析是将每个处理中的氮、钾和锰含量三次重复分别求比值再作方差分析。
2.1 伴生对分蘖洋葱和番茄生长影响
图1表明,与单作相比,伴生处理显著增加了番茄株高、地上部及地下部干重(P<0.05)及番茄根系活力(P<0.05),但显著降低了分蘖洋葱地上部、 地下部干重及根系活力(P<0.05)。伴生后,番茄地上部和地下部干重分别增加19.31%和16.36%,而分蘖洋葱地上部和地下部干重分别降低39.53%和31.8%。
图1 不同栽培模式种植30天后番茄和分蘖洋葱的生长状况Fig.1 Growth status of tomato and tillered onion 30 days after transplanting [注(Note):柱上不同字母表示处理间在P<0.05水平差异显著 Different letters above the bars indicate significant difference among treatments at P<0.05.]
图2 不同栽培模式种植30天后番茄和分蘖洋葱根际土壤酶活性Fig.2 Enzyme activity in the rhizosphere soil of tomato and tillered onion 30 days after transplanting [注(Note):柱上不同字母表示处理间在P<0.05水平差异显著 Different letters above the bars indicate significant difference among treatments at P<0.05.]
图3 不同栽培模式种植30天后番茄和分蘖洋葱根际土壤化学性状 Fig.3 Chemical properties in the rhizosphere soil of tomato and tillered onion 30 days since transplanting[注(Note):柱上不同字母表示处理间在P<0.05水平差异显著 Different letters above the bars indicate significant difference among treatments at P<0.05.]
2.2 分蘖洋葱伴生对番茄根际土壤酶活性的影响
图2显示,分蘖洋葱伴生显著提高了番茄根际土壤中脱氢酶和多酚氧化酶活性(P<0.05),但对土壤酸性磷酸酶和脲酶活性无显著影响。伴生和单作的分蘖洋葱根际土壤脲酶、酸性磷酸酶活性均无显著差异。伴生分蘖洋葱根际土壤脱氢酶和多酚氧化酶活性显著低于单作(P<0.05)。
2.3 栽培模式对分蘖洋葱和番茄根际土壤有效矿质养分含量的影响
伴生较单作显著降低了番茄根际土壤中碱解氮、速效磷、速效钾和有效锰含量(图3)及分蘖洋葱根际土壤中速效磷和有效锰的含量(P<0.05),但对分蘖洋葱的其他相关指标无显著影响,伴生对根际土壤中pH和有机质含量无显著影响。
2.4 伴生对分蘖洋葱和番茄植株中养分含量的影响
与单作相比,伴生显著增加了番茄植株全磷和全锰含量及分蘖洋葱植株全氮和全锰含量(P<0.05),但对番茄植株全氮和全钾含量及分蘖洋葱植株全磷和全钾含量无显著影响(图4)。与单作相比,伴生后番茄植株内全磷和全锰含量分别提高了6.56%和23.74%,而分蘖洋葱植株内全氮和全锰含量分别提高了20.91%和16.89%。
2.5 伴生对植株内的养分比例及番茄灰霉病发病率、病情指数的影响
表1显示,与单作相比,伴生显著降低了番茄植株内氮/钾和氮/锰比率(P<0.05),但提高了分蘖洋葱植株内氮/钾比率(P<0.05)。病害调查显示,分蘖洋葱伴生对番茄灰霉病的发病率无显著影响,但显著降低了番茄灰霉病的病情指数(P<0.05)。
番茄灰霉病病情指数与植株内全锰含量呈显著(P<0.05)负相关,与植株体内氮/钾和氮/锰比率呈极显著(P<0.01)正相关。与植株体内的全氮、全磷及全钾含量相关性不显著(表2)。
在同一个生态系统中,植物之间的正效应和负效应是同时存在的[24]。本研究结果显示与单作相比,分蘖洋葱-番茄伴生栽培显著促进了番茄株高、地上和地下部分干重及根系活力的增加(P<0.05),但分蘖洋葱地上和地下干重及根系活力显著低于单作(P<0.05)。可见分蘖洋葱和番茄伴生体系中的种间促进作用和种间竞争作用同时存在,这说明分蘖洋葱伴生确实能促进番茄生长,但这种促进作用是以牺牲分蘖洋葱自身的生长为代价的。
本研究表明,伴生促进番茄根际土壤脱氢酶活性显著增加(P<0.05)。土壤脱氢酶活性可以作为微生物区系活动和大小的指标之一[25]。伴生栽培下分蘖洋葱根系活动可能引起番茄根际土壤微生物群落发生改变[26],并影响了伴生番茄磷吸收水平[27,28]。伴生番茄根际多酚氧化酶活性显著增加(P<0.05)。土壤多酚氧化酶能把土壤中酚类物质氧化成醌,参与土壤有机组分中芳香类物质的转化,使土壤含酚量降低,土壤得到修复更利于植株的干物质积累[29-30]。伴生后对番茄分蘖洋葱根际土壤脲酶和酸性磷酸酶活性差异不显著,这与柴强等[27]研究结论相近。但是,诸多研究证明合理的间套作能提高根际土壤酶活性[31-32]。分蘖洋葱和番茄伴生在养分利用方面产生的补偿和提高的作用可能来自于其他途径,与根际脲酶和酸性磷酸酶关系不大。
图4 伴生30天对番茄和分蘖洋葱植株全氮、全磷、全钾及全锰含量的影响Fig.4 Effect of the intercropping on total nitrogen(N),total phosphorus(P),total potassium(K) and total manganese(Mn)contents of tomato and tillered onion plants[注(Note):柱上不同字母表示处理间在P<0.05水平差异显著 Different letters above the bars indicate significant difference among treatments at P<0.05.]
处理TreatmentN/KN/Mn发病率(%)Incidencerate病情指数Diseaseindex单作的番茄Monoculturetomato0.79±0.01a109.13±12.72a83.33±0.00a9.50±0.00a伴生的番茄Intercroppoingtomato0.71±0.01b87.76±1.47b83.33±13.61a3.30±0.03b单作的分蘖洋葱Monoculturetilleredonion0.98±0.01b76.96±3.97a伴生的分蘖洋葱Intercroppoingtilleredonion1.14±0.03a79.63±2.19a
注(Note): 同列数据后不同字母表示处理间在0.05水平差异显著 Values followed by different letters in a column are significantly different among treatments at the 0.05 level.
表2 番茄病情指数与植株养分及比值的相关性分析(r)
注(Note):n=6; *—P<0.05; **—P<0.01.
分蘖洋葱伴生后番茄根际土壤中碱解氮、速效磷、速效钾和有效锰显著降低(P<0.05),由于间作增加了另一种作物,形成伴生植物与主作植物竞争吸收矿质元素的现象,故间作植株根际土壤的速效养分含量均低于单作处理[33]。伴生后番茄植株全氮含量变化不显著,而伴生分蘖洋葱植株内全氮含量显著高于单作(P<0.05),这可能是伴生体系中两种植物竞争吸收土壤中速效氮,致使番茄植株内的氮增加不显著。伴生后番茄株内全磷显著增加(P<0.05)。伴生后番茄根干重显著增加(P<0.05),根系的形态参数如根长、侧根的数量、根表面积等已经被证明与磷素的高效吸收密切相关[34-37]。伴生番茄的根系形态变化有待于进一步验证。伴生后番茄植株内全钾有增加的趋势,但是差异不显著,这可能是土壤中速效钾含量较高(323.30 mg/kg),已经能够满足番茄的生长需要,这与前人研究结果相似[38]。前人研究表明,间/混作条件下一种植物生长和锰营养的改善可能与另一种植物通过根系分泌物来活化土壤难溶性的锰氧化物、提高土壤有效锰含量有密切关系[39-41]。本研究表明,伴生后分蘖洋葱和番茄植株体内全锰的含量均显著增加(P<0.05),伴生体系植株可能通过根系分泌物对Mn2+的螯合作用而提高了根际土壤中锰的有效性,进而促进了对锰的吸收[42]。关于分蘖洋葱伴生如何通过根系分泌物来活化土壤锰氧化物的机制还有待于进一步研究。
本研究表明,伴生对番茄植株内全氮无显著影响,而伴生提高了番茄植株内全钾含量,因此,伴生后番茄植株内氮/钾比率显著降低(P<0.05),且植株内氮/钾比率与番茄灰霉病病情指数呈极显著正相关(P<0.01),说明分蘖洋葱伴生使番茄氮和钾养分平衡状况变化,可能是植株抗病性提高的主要原因之一。本研究得出分蘖洋葱伴生使番茄植株内全锰含量显著增加(P<0.01),且番茄的病情指数与全锰含量呈显著负相关(P<0.05)。植株内锰能调节作物体内氧化还原反应,提高植株的抗病性[43]。锰还作为苯丙烷代谢途径相关酶的辅助因子,改善促进根系中酚类物质和木质素合成增加,从而提高抗真菌的能力[44]。本研究中得出分蘖洋葱伴生对番茄灰霉病的发病率无显著影响,但降低了番茄灰霉病的病情指数(P<0.05)。其原因可能是病害调查较晚影响发病率结果,有待于进一步验证。
分蘖洋葱-番茄伴生栽培促进番茄生长但抑制分蘖洋葱生长。伴生后番茄植株内的全磷和全锰含量显著增加(P<0.05),且伴生的番茄植株内氮/钾和氮/锰比显著降低(P<0.01)。分蘖洋葱伴生后显著降低番茄灰霉病的病情指数(P<0.05)。综上,分蘖洋葱伴生促进了番茄生长和对磷和锰矿质营养的吸收,促进植株内养分平衡,提高了番茄抗灰霉病能力。
[1] 吴凤芝,刘德,王东凯,等. 大棚番茄不同连作年限对根系活力及其品质的影响[J]. 东北农业大学学报,1997,28(1): 33-38. Wu F Z, Liu D, Wang D Ketal. The effects of different years of continuous cropping on the activity of root systems and their qualities in the plastic house tomatoes[J]. Journal of Northeast Agricultural University, 1997, 28(1): 33-38.
[2] 齐军山, 张悦丽, 张博, 等. 设施番茄灰霉病绿色防控技术[J]. 中国蔬菜, 2013, (15): 26-27. Qi J S, Zhang Y L, Zhang Betal. Non-pollutant prevention and control technology of gray mould on facility tomatoes[J]. China Vegetables, 2013, (15): 26-27.
[3] 李勇杰, 陈远学, 汤利, 等. 地下部分隔对间作小麦养分吸收和白粉病发生的影响[J]. 植物营养与肥料学报, 2007, 13(5): 929-934. Li Y J, Chen Y X, Tang Letal. Effects of root separation on nutrient uptake of wheat and occurrence of powdery mildew under wheat-fababean intercropping[J]. Plant Nutrition and Fertilizer Science, 2007, 13(5): 929-934.
[4] Zhou W J, Zhang Y Z, Wang K Retal. Plant phosphorus uptake in a soybean-citrus intercropping system in the red soil hilly region of South China[J]. Pedosphere, 2009, 19(2): 244-250.
[5] Johnson M W, Mau R F L. Effects of intercropping beans and onions on populations ofLiriomyzaspp. and associated parasitic hymenoptera[J]. Hawaiian Entomological Society, 1986, 27(15): 95-103.
[6] Chen Y X, Zhang F S, Tang Letal. Wheat powdery mildew and foliar N concentrations as influenced by N fertilization and belowground interactions with intercropped faba bean[J]. Plant and Soil, 2007, 291: 1-13.
[7] 肖靖秀, 周桂夙, 汤利, 等.小麦/蚕豆间作条件下小麦的氮、钾营养对小麦白粉病的影响[J].植物营养与肥料学报, 2006, 12(4): 517-522. Xiao J X, Zhou G S, Tang Letal. Effects of nitrogen and potassium nutrition on the occurence ofBlumeriagraminis(DC). Speer of wheat in wheat and faba bean intercropping[J]. Plant Nutrition and Fertilizer Science, 2006, 12(4): 517-522.
[8] 肖靖秀, 郑毅. 间套作系统中作物的养分吸收利用与病虫害控制[J]. 中国农学通报, 2005, 21(3): 150-154. Xiao J X, Zheng Y. Nutrients uptake and pests and diseases control of crops in interopping system[J]. China Agriculture Science Bulletin, 2005, 21(3): 150-154.
[9] 乔鹏, 汤利, 郑毅, 等. 不同抗性小麦品种与蚕豆间作条件下的养分吸收与白粉病发生特征[J]. 植物营养与肥料学报, 2010, 16(5): 1086-1093. Qiao P, Tang L, Zheng Yetal. Characteristics of nutrient uptakes and powdery mildew incidence of different resistant wheat cultivars intercropping with faba bean[J].Plant Nutrition and Fertilizer Science, 2010, 16(5): 1086-1093.
[10] Graham R D. A role for manganese in the resistance of wheat plants to take-all[J]. Plant and Soil, 1984, 78: 441-444.
[11] Marschiver H. Mineral nutrition of higher plants [M]. London: Academic Press, 1991, 223-231.
[12] 蒋卫杰, 郑光华. 氮钾互作对蔬菜生长发育的影响[J]. 中国蔬菜, 1992, (2): 46-50. Jiang W J, Zheng G H. The influence of nitrogen and potassium to against each other vegetable growth and development[J]. China Vegetables, 1992, (2): 46-50.
[13] Go' mez R O, Zavaleta M E, Gonza' lez H Aetal. Allelopathy and microclimatic modification of intercropping with marigold on tomato early blight disease development[J]. Field Crops Research, 2003, 83: 27-34.
[14] 刘凤淮, 文廷刚, 杜小凤, 等. 蔬菜连作障碍因子分析及其防治措施[J]. 江西农业学报, 2008, 20(5): 41-43. Liu F H, Wen T G, Du X Fetal. Analysis of obstacle factors of vegetable continuous cropping and prevention measures[J]. Acta Agriculturae Jiangxi, 2008, 20(5): 41-43.
[15] 吴凤芝, 潘凯, 刘守伟. 设施土壤修复及连作障碍克服技术[J]. 中国蔬菜, 2013, (13): 39. Wu F Z, Pan K, Liu S W. Restoration of soil and the technology of continuous cropping obstacle to overcome[J]. China Vegetables, 2013, (13): 39
[16] 张雄. 用TTC(红四氮唑)法测定小麦根和花粉活力及其应用[J]. 植物生理学通讯, 1982, (3): 48-50. Zhang X. TTC method is used to test the wheat root and pollen vitality and its application[J]. Plant Physiology Communications, 1982, (3): 48-50.
[17] Inderjit Mallik A U. Effect of phenolic compounds on selected soil properties[J]. Forest Ecology Management, 1997, 92: 11-18.
[18] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. 301-320. Bao S D. Soil agrochemical analysis [M]. Beijing: China Agriculture Press, 2000. 301-320.
[19] 秦怀英. 植物锰的测定[M]. 北京: 农业出版社, 1992, 225-226. Qin H Y. Determination of manganese in the plant [M]. Beijing: Agriculture Press, 1992. 225-226.
[20] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1987. 274-328. Guan S Y. Soil enzyme and its research methods [M]. Beijing: Agriculture Press, 1987. 274-328.
[21] 严昶升. 土壤肥力研究方法[M]. 北京: 农业出版社, 1988. Yan C S. Soil fertility research methods[M]. Beijing: Agriculture Press, 1988.
[22] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. 231-233. Lu R K. Analytical method of soil agrochemistry [M]. Beijing: China Agricultural Science and Technology Press, 2000. 231-233.
[23] 农业部农药检定所. 农药田间药效试验准则[M]. 北京: 中国标准出版社, 1998. 45-51. Institute for the Control of Agrochemicals Ministry of Agriculture. Field trial guildline for pesticide test [M]. Beijing: Standards Press of China, 1998. 45-51.
[24] 郑晓媛, 赵莉, 许楠, 等. 桑树大豆间作地上部和地下部的种间作用研究[J]. 土壤, 2011, 43(3): 493-497. Zheng X Y, Zhao L, Xu Netal. Interspecific interaction of below-ground and above-ground indices in mulberry-soybean intercropping system[J]. Soils, 2011, 43(3): 493-497.
[25] Zhou X G, Wu F Z .p-Coumaricacid influenced cucumber rhizosphere soil microbial communities and the growth offusariumoxysporumf. sp.cucumerinumOwen[J]. PLoS ONE, 2012, 7(10): 1-11.
[26] He Y, Ding N, Shi J Cetal. Profiling of microbial PLFAs: Implications for interspecific interactions due to intercropping which increase phosphorus uptake in phosphorus limited acidic soils[J]. Soil Biology & Biochemistry, 2013, (57): 625-634.
[27] 周礼恺. 土壤酶学[M]. 北京: 科学出版社, 1987. 229-230. Zhou L K. Soil enzyme [M]. Beijing: Science Press, 1987. 229-230.
[28] 李东坡, 武志杰, 陈利军等. 长期培肥黑土脱氢酶活性动态变化及其影响因素[J]. 土壤通报, 2005, 36(5): 679-683. Li D P, Wu Z J, Chen L Jetal. Dynamics of dehydrogenase activity of black soil treated by long-term fertilization[J]. Chinese Journal of Soil Science, 2005, 36(5): 679-683.
[29] 贾新民, 于泉林, 沙永平, 等. 大豆连作土壤多酚氧化酶研究[J]. 黑龙江八一农垦大学学报, 1995, 8(2): 40-43. Jia X M, Yu Q L, Sha Y Petal. Study on soil polyphenol oxidase in continuous cropping soybean[J]. Journal of Heilongjiang Bayi Land Reclamation University, 1995, 8(2): 40-43.
[30] 乔蓬蕾, 吴凤芝, 周新刚. 连作对作物根际土壤微生物菌群及酶活性影响[J]. 沈阳农业大学学报, 2013, 44(5): 524-530. Qiao P L, Wu F Z, Zhou X G. Effects of continuous cropping on soil microbe communities and enzyme activity[J]. Journal of Shenyang Agricultural University, 2013, 44(5): 524-530.
[31] 柴强, 黄鹏, 黄高宝. 间作对根际土壤微生物和酶活性的影响研究[J]. 草业学报, 2005, 14(5): 105-110. Chai Q, Huang P, Huang G B. Effect of intercropping on soil microbial and enzyme activity in the rhizosphere[J]. Acta Prataculturae Sinica, 2005, 14(5): 105-110.
[32] 张洁莹, 宁堂原, 冯宇鹏, 等. 套作糯玉米对连作菜田土壤特性及产量的影响[J]. 中国农业科学, 2013, 46(10): 1994-2003. Zhang J Y, Ning T Y, Feng Y Petal. Effects of intercropping with waxy maize on crop yield and soil properties of the continuous vegetable field[J]. Scientia Agricultura Sinica, 2013, 46(10): 1994-2003.
[33] 唐世凯, 刘丽芳, 李永梅, 等. 烤烟间作草木樨对土壤养分的影响[J]. 中国烟草科学, 2009, 30(5): 14-18. Tang S K, Liu L F, Li Y Metal. Effects of flue-cured tobacco intercropping with sweet clover on soil nutrient contents[J]. Chinese Tobacco Science, 2009, 30(5): 14-18.
[34] Liu Y, Mi G H, Chen F Jetal. Rhizosphere effect and root growth of two maize (ZeamaysL.) genotypes with contrasting P efficiency at low P availability[J]. Plant Science, 2004, 167: 217-223.
[35] Zhu J M, Lynch J P. The contribution of lateral rooting to phosphorus acquisition efficiency in maize(Zea mays) seedlings[J]. Funct Plant Biol, 2004, 31: 949-958.
[36] Lynch J P, Brown K M. Root strategies for phosphorus acquisition[A]. The Ecophysiology of Plant-Phosphorus Interactions[C]. New York: Springer, 2008. 83-116.
[37] Ramaekers L, Remans R, Rao I Metal. Strategies for improving phosphorus acquisition efficiency of crop plants[J]. Field Crops Research, 2010, 117: 169-176.
[38] 肖靖秀, 郑 毅, 汤利, 等. 麦蚕豆间作系统中的氮钾营养对小麦锈病发生的影响[J]. 云南农业大学学报, 2005, 20(5): 640-645. Xiao J X, Zheng Y, Tang Letal. Effects of potassium and nitrogen supply on the occurrence of wheat rust in wheat and faba bean intercropping system[J]. Journal of Yunnan Agricultural University, 2005, 20(5): 640-645.
[39] 何春娥, 赵秀芬, 刘学军, 等. 燕麦/小麦间作对小麦生长和锰营养的影响[J]. 生态学报, 2006, 26(2): 357-363. He C E, Zhao X F, Liu X Jetal. The effects of intercropping oat and wheat on growth and manganese nutrition of wheat[J]. Acta Ecologica Sinica, 2006, 26(2): 357-363.
[40] 鲁耀, 赵平, 郑毅, 等. 水旱轮作制下蚕豆/小麦间作对小麦锰吸收的影响[J]. 麦类作物学报 2010, 30(2): 372-377. Lu Y, Zhao P, Zheng Yetal. Effect of wheat and faba bean intercropping on manganese uptake of wheat under upland-paddy rotation[J]. Journal of Triticeae Crops, 2010, 30(2): 372-377.
[41] Gardner W K, Boundy K A. The acquisition of phosphorus byLupinesalbusL. Ⅳ. The effect of interplanting wheat and white lupine on the growth and mineral composition of the two species[J]. Plant and Soil, 1983, 70: 391-402.
[42] 鲁耀, 郑毅, 汤利, 等. 施氮水平对间作蚕豆锰营养及叶赤斑病发生的影响[J]. 植物营养与肥料学报, 2010, 16(2): 425-431. Lu Y, Zheng Y, Tang Letal. Effects of nitrogen application on manganese nutrition and occurrence of leaf spots of intercropped faba beans[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 425-431.
[43] 郑甲成, 刘婷, 张百忍, 等. 几种微量元素作用及对水稻发育的影响[J]. 吉林农业大学学报, 2010, 32(S): 5-8. Zheng J C, Liu T, Zhang B Retal. Several kinds of trace elements and their influence on rice growth[J]. Journal of Jilin Agricultural University, 2010, 32(S): 5-8.
[44] Rengel Z, Graham R D, Pedler J F. Manganese nutrition and accumulation of phenolics and lignin as related to differential resistance of wheat genotypes to the take-all fungus[J]. Plant and Soil, 1993, 151: 255-263.
Effect of intercropping with tillered onion on mineral nutrient uptake and gray mold disease occurrence of tomato
WU Xia1,2, WU Feng-zhi1*, ZHOU Xin-gang1
(1CollegeofHorticulture,NortheastAgriculturalUniversity,Harbin1510030,China2CollegeofAgronomy,HeilongjiangBayiAgriculturalUniversity,Daqing,Heilongjiang163319,China)
【Objectives】 Consecutive mono-culturing of tomato seriously affects its yield and quality in the protected tomato production in China. Tomato and onion intercropping is found effective in increasing tomato production, decreasing soil-borne disease and keeping healthy soil. Here the effect of their intercropping on tomato(LycopersiconesculentumMill.) and tillered onion(Alliumcepavar.agrogatumDon.)growth, mineral nutrient absorption and tomato gray mould disease incidence was studied. 【Methods】 A pot experiment was conducted in green house in 2012. Three culture modes were desinged: tomato and tillered onion intercropping, tomato monoculture and tillered onion monoculture. The growth indicators of tomato and tillered onion were investigated; the incidence and disease index of tomato gray mould disease were measured 30 days after the intercropping. The contents of total nitrogen, phosphorus, potassium and manganese were measured. The soil samples of rhizosphere of tomato and tillered onion were collected and the physical and chemical properties were measured. The activities of urease, acid phosphatase, dehydrogenase and polyphenol oxidase were measured using fresh soil samples which were stored in 4℃. 【Results】 1) Compared with the monocultures, the intercropping increases tomato plant height, shoot and root dry weights, and root activity significantly(P<0.05), decreases those of tillered onion significantly(P<0.05). The activities of soil dehydrogenase and polyphenol oxidase in the tomato rhizosphere are increased significantly(P<0.05), while those in the tillered onion rhizosphere are decreased significantly(P<0.05). There are no significant differences in the activities of soil urease and acid phosphatase between the rhizosphere of tomato and tillered onion. 2) In the intercropping, the contents of soil available nitrogen, phosphorus, potassium and manganese in the tomato rhizosphere are decreased significantly(P<0.05), the soil available phosphorus and available manganese in the rhizosphere of tillered onion are decreased significantly(P<0.05), and soil pH and organic matter of rhizosphere soil of tomato and available nitrogen, available potassium pH and organic matter of rhizosphere soil tillered of onion have no significant differences, compared to those of the monocropping. 3) Compared with corresponding mono-culture, the P and Mn contents in tomato and the N and Mn contents in tillered onion are increased significantly(P<0.05), not in other nutrients in the intercropping. 4) The tomato gray mold disease index in the intercropping is significantly decreased, and significantly and negatively correlated with plant Mn content(P<0.05), significantly and positively correlated with plant N/K and N/Mn ratios(P<0.01). 【Conclusions】 The intercropping improves the growth of tomato but restrains that of tillered onion. The phosphorus and manganese contents are increased significantly(P<0.05), and the N/K and N/Mn ratios in tomato plants are decreased significantly(P<0.05) in the intercropping. The tomato gray mold disease index in the intercropping is significantly decreased by the monocropping(P<0.05). So the tomato-tillered onion intercropping is an effective way for promoting tomato’s healthy growth.
intercropping;tomato;tillered onion;nutrients uptake;gray mold disease
2014-04-10 接受日期: 2014-10-16
国家自然科学基金项目(31172002); 哈尔滨科技局创新人才项目(2014RFXXJ004)资助。
吴瑕(1978—), 女, 黑龙江省肇东市人, 硕士, 讲师, 研究方向为设施园艺及蔬菜生理生态。 Tel: 0459-6819184;E-mail: wuxiaxia_2005@163.com。* 通信作者 Tel: 0451-55190278;E-mail: fzwu2006@aliyun.com
S641.2;S633.2
A
1008-505X(2015)03-0734-09