基于四维四元数频域的彩色图像双重水印算法

2015-06-14 07:38王定成田翠翠陈北京田宇航
吉林大学学报(工学版) 2015年4期
关键词:二值彩色图像双重

王定成,田翠翠,陈北京,田宇航

(1.南京信息工程大学 计算机与软件学院,南京210044;2.南京信息工程大学 江苏省网络监控工程中心,南京210044;3.南京信息工程大学 江苏省大气环境与装备技术协同创新中心,南京210044)

0 引 言

数字水印技术作为数字媒体产品版权保护的一种重要手段,这些年来成为信息安全研究领域的一个热点[1]。当前图像水印算法主要针对灰度图像,而随着图像获取设备的发展,现在获取的数字图像基本都是彩色的,它们提供了更丰富的信息量并带来了更舒服的视觉感受,因此彩色图像的数字水印逐步引起学者的关注,而且相对于灰度图像数字水印它具有两个优势[2]:①水印容量更大;②抗攻击健壮性更强。

从上世纪90年代开始,国内外一些专家学者将四元数[3]的相关理论引入到彩色图像处理[4-9]:彩色图像的每个像素采用一个纯四元数来表示,3个通道作为它的3个虚部。这样一幅彩色图像可以表示为一个纯四元数矩阵。彩色图像的四元数表示方法已经成功应用于彩色图像处理的很多领域[10-17]。这些研究表明彩色图像四元数表示方法的主要优势在于在多维空间上把彩色图像像素作为一个矢量整体进行处理,而非三通道分别处理,而且考虑了色彩关联。

随着基于四元数的彩色图像处理技术的发展,越来越多的学者致力于研究基于四元数的彩色图像数字水印算法,其中大部分都是基于四元数离散傅里叶变换(Quaternion discrete Fourier transform,QDFT)。Bas等[8]最早将QDFT 引入彩色图像水印,在QDFT 频域采用量化索引调制算法嵌入比特流水印信息,他们对比了分别采用单位纯四元数和μLum=(目前采用最广泛)得到的含水印图像的质量,实验表明:采用μPerc比采用亮度轴μLum在不可见性上更佳;随后,Tsui等[9]基于CIE Lab颜色模型提出一种非盲算法,该算法先自适应生成一个无意义彩色水印,然后将该水印和频域系数直接相加嵌入水印;Ma等[10]则基于局部QDFT 提出了一种半盲算法,他们首先在载体图像中选择一些参考点,然后在该点周围邻域所对应的频域系数中嵌入二值水印;Sun 等[11]结合QDFT 和四元数奇异值分解提出一种带边信息的算法,该算法提取彩色水印时需要载体图像的奇异值,而且嵌入的水印无意义。

最近,江淑红等[12]指出Bas等[8]没有考虑到一个水印嵌入前提:为了避免嵌入水印后的图像存在能量损失,通过四元数离散Fourier逆变换(IQDFT)得到四元数矩阵实部必须全为0。否则取三个虚部获取含水印图像将丢失非零实部数据,从而影响含水印图像和提取水印的质量。也就是说,即使在没有任何攻击的情况下,也不能完全正确提取水印。为了解决这个问题,她们基于μLum采用量化索引调制算法修改QDFT 系数的实部嵌入二值水印,并按照系数矩阵实部的反对称性修改相应系数。需要说明的是,文献[9,10]也考虑了这个前提。Wang等[13]则基于最小二乘支持向量机和伪Zernike矩进一步改进江淑红等的工作[12]以抵抗几何变换攻击。

以上这些研究的实验结果表明这些基于QDFT 的算法能够较好地平衡不可见性和鲁棒性:①不仅考虑了色彩信息,还考虑了三通道的整体性和相关性;②四元数频域是一个四维系数空间,提供了更大的水印容量;③嵌入在四元数频域系数一个分量中的水印信息可以扩散到空间域彩色图像的两个或三个通道,从而实现数字水印的健壮性和不易感知性的良好结合[12]。但它们都没有完全利用四元数频域这一四维系数空间,只考虑了QDFT 系数的一个或两个分量而不是所有四个。而且还至少存在以下不足中的一项:①非盲;②由于没有按照对称性修改系数,存在能量损失;③水印是非彩色图像,而在实际应用中很多情况下水印是彩色的,而且彩色水印较灰度或二值水印能携带更多的信息以及这些色彩信息使彩色水印更易辨认;④水印是无意义图像,而在很多现实应用中要求水印具有某种意义,比如Logo、版权信息等。因此,本文主要针对单位纯四元数k,首先推导出在修改QDFT 系数嵌入水印时需要满足的系数对称条件,然后基于QDFT、Arnold置乱变换和冗余嵌入策略,提出一种彩色图像双重水印算法来改进以上不足。

1 四元数傅里叶变换及频域系数水印方案

1.1 四元数及其基本运算法则

作为复数的推广,一个四元数包括一个实部和三个虚部,即:

式中:a、b、c、d均为实数;i、j、k为三个虚数单位,遵循如下运算规则:

当实部a=0时,称q为纯四元数。

1.2 四元数离散傅里叶变换及嵌入水印前提条件

四元数(超复数)傅里叶变换首先由Ell[14]提出,然后由Sangwine[15]引入彩色数字图像处理并定义了QDFT 和IQDFT。由式(2)可知,四元数的乘法不满足交换律,因此Pei等[16]给出了三种类型的QDFT 和IQDFT:两边型[15],左边型,右边型。本文采用的是使用比较广泛的右边型。二维彩色图像函数f(m,n)的右边型QDFT 及其逆变换IQDFT 定义为[16]:

式中:M 和N 分别为图像f 的行数和列数;μ是任意单位纯四元数;μ 可表示为三个虚数单位i、j和k 的线性组合,即:μ =αi+βj+γk;α,β,γ ∈R,‖μ‖=1,其中‖·‖为四元数取模运算。

从式(4)可知,在对QDFT 系数FR修改嵌入水印后,F-R应该仍然是一个纯四元数矩阵,即:

式中:o为零矩阵;Re(F-R)表示四元数F-R的实部。否则,只取F-R的三个虚部获取含水印图像将丢失非零的实部数据,从而导致水印能量损失问题。式(5)就是江淑红等[12]指出的嵌入水印需要满足的前提条件。

1.3 频域系数水印方案

先采用通用单位纯四元数(μ=αi+βj+γk)推导彩色图像QDFT 和IQDFT 与单通道DFT和IDFT 的关系式,然后针对三个不同的单位纯四元数μ(本文采用的k,江淑红等[12]的μLum,Bas等[8]的μPerc),分析嵌入水印时需要遵循的系数对称性规则以满足式(5)的前提条件,最终给出基于不同单位纯四元数的频域系数水印方案。

1.3.1 QDFT 和IQDFT 与 单 通 道 的DFT 和IDFT 之间的关系式

以RGB 颜 色空 间 为 例,令fR(x,y)、fG(x,y)、fB(x,y)分别表示彩色图像的红绿蓝3个通道,则彩色图像f(x,y)可以表示为:

对于通用单位纯四元数μ=αi+βj+γk,将式(6)代入式(3),可得:

其中:

这里DFT(fR),DFT(fG)和DFT(fB)分别是红绿蓝三通道传统的DFT 矩阵,Re(z)和Im(z)分别表示传统的复数z的实部和虚部。

对于IQDFT,将式(7)代入式(4),类似可得:

其中:

式中:IDFT(·)表示传统的复数傅里叶逆变换。1.3.2 基于不同单位纯四元数的频域系数水印方案

(1)本文采用的μ =k

此时α=β=0,γ=1。由式(8)和DFT 系数的共轭对称性可知,A(0,0)=0,分量A 和D 分别具有如下所示的反对称性和对称性:

从而易知:Re(IDFT(A))=o,Im(IDFT(D))=o,以及

式(13)其实就是式(5)所示的前提条件。也就是说,只要在修改A(u,v)和D(u,v)的同时按照分量A 的反对称性和D 的对称性相应地修改它们的对称系数嵌入水印,由式(10)可知不管B(u,v)和C(u,v)如何修改,前提条件依然满足。因此,可将双重水印数据嵌入到A、B、C 和D 这4个分量中,然后取的三个虚部作为含水印图像不会造成能量损失,从而充分利用QDFT四维系数空间。

(2)江淑红等[12]采用的μ =μLum

由于如果在修改分量A 的同时按式(11)修改其反对称系数,Re(IDFT(A))=o仍然成立,不会破坏前提条件,而分量B、C和D 的修改不能保证继续满足该前提条件,因此,江淑红等[12]只修改了分量A 嵌入水印。

(3)Bas等[8]采用的μ =μPerc

因此,修改分量A 嵌入水印的同时按式(11)修改其反对称系数,前提条件仍然可以满足。而且,式(15)中不涉及分量B,所以B 也可用于嵌入水印且不受对称性的限制。作者将Bas等[8]的算法改进为将水印数据嵌入分量A 和B 中。第3节中实验对比所采用的就是该改进算法。

在普洱茶养生旅游道内应进行统一的规划和管理,针对旅游环线内交通情况进行评估和整改方案,减少弯道,对路旁的风景道进行绿化。其次,做好旅游环线的养生基础设施,环线内鼓励建设养生酒店,对零散农家乐进行统一的规划和管理,严格把控卫生和服务质量。最后,旅游道内配备医疗保健中心因地制宜兴建疗养院,茶林美容美体中心,茶疗所,雨林瑜伽馆和普洱茶DIY馆等。

综上,如果采用μ=μLum或μPerc,为了满足前提条件式(5),最多只能将水印数据嵌入到QDFT系数的一或两个分量中,没能充分利用QDFT 四维系数空间,而作者提出的采用μ =k 的方案则能将水印嵌入到QDFT 系数的所有4个分量中。

2 基于四元数离散傅里叶变换的彩色图像双重水印算法

结合QDFT、Arnold置乱变换以及冗余嵌入策略将二重水印重复嵌入到载体图像中,水印算法框图如图1 所示。Arnold置乱变换有助于增强水印安全和水印算法的鲁棒性。冗余嵌入策略则有助于进一步提高算法的鲁棒性,特别是剪切攻击。不过带来的负效应是:①含水印图像质量(即不可见性)有所降低;②由于嵌入的水印是重复的,在某种意义上水印容量也有所降低。不过由于本文提出的基于μ =k 算法具有较大的容量,因此采用冗余嵌入策略能够较好地平衡不可见性和鲁棒性,这在第3节的实验结果中得到了较好的印证。下面分别从双重水印嵌入和提取两方面进行详细阐述。

图1 彩色图像双重水印算法框图Fig.1 Dual watermarking algorithm diagram for color images

2.1 双重水印嵌入

令嵌入到彩色载体图像中的双重水印分别为彩色图像水印w 和二值水印图像v,尺寸均为Mw×Nw。需要注意的是:为了便于后续讨论分析,双重水印的尺寸和接下来引入的重复嵌入次数KT均设为相同,应用中可根据具体情况设为不一样。水印嵌入按如下步骤进行:

(1)水印图像预处理。将双重水印进行KI次周期为KP的Arnold置乱,然后将置乱后的彩色水印的每个分量的每个十进制像素值转换为8位二进制数据。最终将得到的二进制数据复制KT次合成为一个比特流水印bw。

(2)载体图像分块QDFT 变换。将彩色载体图像分成8×8的单位小块,然后分别对这些小块进行QDFT 变换。

(3)水印嵌入。对于每一个小块,按序选择图2所示中频候选位置中的部分位置作为水印嵌入区域。对于选择区域KM中任意位置(u,v),针对不同的单位纯四元数(k,μLum 和μPerc),选择频域系数4个分量(A(u,v),B(u,v),C(u,v)和D(u,v))中的1个到4个分量通过量化索引调制算法嵌入双重水印(比特流bw 和二值水印v):

式中:I(u,v)是4个分量之一;I′(u,v)为其修改后的值;KΔ为量化步长;[·]为取整函数;z 是当前嵌入比特流数据的坐标;(x,y)是二值水印数据坐标。

图2 QDFT频域8×8宏块中用于水印嵌入的中频候选位置Fig.2 QDFT medium frequency positions in 8×8 macro-block for embedding

(4)分块IQDFT 变换。对所有的单位小块进行IQDFT 变换得到最终的含水印图像。

步骤(3)中各分量的嵌入策略为:对于提出的基于μ=k的算法,假设l为每个宏块需要嵌入的水印比特数,如果l≤128bit,则将水印信息分成四等份分别嵌入4个分量中,对于每个分量按图2所示的顺序按序嵌入;如果l>128bit,由于分量A 和D 需要保持对称性在各自嵌入32bit水印后已饱和,则将剩余的(l-64)bit水印分成两等份嵌入另外的分量B 和C 中。对于基于其他μ的算法,采用类似的嵌入策略。

从以上步骤可知,本文算法中密钥Key主要包括:Arnold 置乱变换的置乱次数KI及周期KP,中频嵌入位置信息KM,冗余嵌入次数KT和量化步长KΔ。

2.2 双重水印提取

利用密钥Key,双重水印可按如下步骤提取:

(1)测试图像分块QDFT 变换。将测试图像分成8×8 的单位小块,并分别对这些小块进行QDFT 变换。

(2)提取KT个冗余嵌入的比特流水印bws和二值水印vs,s=1,2,…,KT。利用密钥Key中的中频嵌入位置信息KM和量化步长KΔ,采用式(17)所示的量化解码公式提取嵌入的比特流水印数据。

式中:I′(u,v)表示QDFT 频域系数的一个分量。然后按下式获取最终比特流水印bw′:

对于二值水印v′的提取,也采取与上述比特流水印提取一样的思路。

(3)提取的比特流数据bw′按8位一组进行分组,并将每组8位数据转换为十进制得到置乱的彩色图像像素值数据w′,然后将提取的置乱彩色水印w′和二值水印v′通过(KP-KI)次Arnold变换得到最终的彩色水印和二值水印

从上述步骤可知,水印提取无需原始载体和原始水印,所以为盲提取。

3 实验结果及分析

为了验证本文算法的有效性,下面通过一系列实验从不可见性和抗攻击鲁棒性两方面进行测试,并与Su等[2]提出的基于Schur分解的算法进行了对比。该算法通过同时修改每个4×4宏块的Schur分解矩阵中的两个系数嵌入一个比特的水印信息。

3.1 性能评价参数

为说明算法在版权保护等应用中的有效性,引入3个客观参数对实验结果进行评估。

(1)峰值信噪比(Peak signal to noise ratio,PSNR)。用来评估嵌入水印的不可见性,PSNR值越大,表明嵌入信息的透明性越好。对于大小为Mh×Nh的彩色载体图像h(x,y)和含水印图像h′,它们之间的PSNR 为:

式中:hR、hG、hB和h′R、h′G、h′B分别为彩色载体图像和含水印图像的三个通道。

(2)归 一 化 相 关 系 数 (Normalized correlation,NC)。用来评估提取的彩色水印图像的有效性,NC 值越高,表明提取的彩色水印与原水印越接近。对于大小为Mw×Nw的彩色水印图像w ={wR,wG,wB}和提取的水印图像=}之间的NC值为:

(3)比特误差率(Bit error rate,BER)。用来评估提取的二值水印图像的有效性,BER 越低,表明提取水印与原水印越接近。对于大小为Mw×Nw的二值水印图像v(x,y)和提取的水印图像之间的BER 为:

3.2 不可见性测试

在这个实验中,采用10 幅大小为512×512的标准图像作为载体图像集,包括经典的Lena、F16、Peppers和Woman等图像,如图3(a)~(j)所示。彩色水印图像则采用了2 幅大小为32×32的东南大学Logo和Mandrill图像,二值水印图像为一幅包含“东南大学”四个汉字的二值图像,他们分别如图3(k)~(m)所示。

图3 彩色载体图像(尺寸为512×512,(a)~(j))以及彩色水印和二值水印图像(尺寸为32×32,(k)~(m))Fig.3 Color host images

由于Su等[2]提出的算法在每个分量的4×4宏块的Schur分解矩阵中只嵌入一个比特数据,因此该算法最多只能在512×512的载体图像中重复嵌入32×32的彩色水印2次,只是这时已饱和不能再嵌入二值水印。作者对他们的算法进行一点小修改:该算法嵌入水印是基于Schur分解矩阵U =(ui,j)1≤i,j≤4中|u2,1|和|u3,1|在数值上很接近这个事实,从而通过修改这两个元素嵌入水印;而实际上,|u4,1|在数值上也与这两个元素大小相当,因此可以按照与他们原来算法类似的思路修改元素u4,1嵌入二值水印。不过,对于32×32的双重水印,修改算法最多还是只能冗余重复嵌入2次。而其余3种算法具有更高的水印容量:对于提出的基于k的算法,如将图2所示的所有48 个中频位置都选为嵌入区域,则QDFT频域每个8×8宏块可嵌入154bit数据,从而在不考虑含水印图像质量的情况下最大可重复嵌入这双重水印24次;对于基于μLum的算法[12],由于只能在分量A 中嵌入水印,最大可重复嵌入5次;改进的基于μPerc的算法[8]能修改分量A 和B嵌入水印,因此最大可冗余嵌入10次。也就是说本文算法的水印容量是Su等[2]算法的12倍,是基于μLum 的算法的4.8倍,是基于μPerc 的算法的2.4倍。因此,为公平起见,所有对比算法的重复嵌入次数都设为KT=2。其他的一些参数设置为:Arnold变换的迭代次数KI=10,量化步长KΔ=160。

表1显示了各算法在10幅载体图像内嵌入不同双重水印后得到的含水印图像与载体图像之间的PSNR 值。表2显示了各算法将图3(k)和(m)嵌入到图3(a)中得到的含水印图像以及提取的双重水印。从表1和表2可以看出:①提出的基于k的算法在保真性方面明显优于另外两种基于四元数的算法。主要原因在于本文算法完全利用了QDFT 系数的4个分量,而另外两种算法只考虑了一个或两个分量。从而,为了嵌入相同的水印数据,另外两种算法需要在每个宏块中修改更多系数。而系数修改越多,图像质量退化越厉害;②基于μPerc的算法优于基于μLum的算法,这与Bas等在文献[8]中的结论一致;③三种基于四元数的算法均优于采用传统的三通道分别处理思想的Su等[2]的算法,基于四元数的算法针对载体图像集的PSNRSTD值远小于Su 等的算法,而且基于四元数的算法对不同双重水印也是稳定的。这主要是因为基于四元数的算法都采用了彩色图像四元数表示,将彩色载体图像作为一个整体进行处理,而且考虑到了通道之间的关联;④除了Su等[2]的算法,其他算法都能够完全正确提取双重水印。原因在于Su等[2]的算法嵌入水印后破坏了Schur分解矩阵的正交性。

表1 不同载体图像H 和不同双重水印图像W 的PSNR 值Table 1 PSNR values of different host images Hand different dual watermarks W

表2 在图3(a)中嵌入图3(k)和(m)后得到的含水印图像和提取水印Table 2 Watermarked images and extracted watermarks obtained by embedding Fig.3(k)and(m)into Fig.3(a)

3.3 抗攻击鲁棒性测试

不失一般性,继续采用3.2小节将图3(k)和(m)嵌入10幅载体图像得到的10幅含水印图像进行实验,对这些图像进行10种不同类型攻击来测试算法的鲁棒性。这10种攻击依次为模板大小均为3×3的高斯滤波、中值滤波、均值滤波和运动模糊,质量因子为60的JPEG 压缩,均值为0、均方差为10的高斯噪声,密度为1%的椒盐噪声,裁剪面积为60%的裁剪,角度为30°的几何旋转以及因子为60%的几何缩放。这里需要说明的是:对比的4种算法本身并不抗几何变换攻击,因此转为测试这些算法对由几何校正带来的截断误差的鲁棒性,目前已有不少算法通过估计几何变换参数来进行几何校正[17-18];也就是说,先将含水印图像进行前向几何变换,然后再通过逆变换进行校正,从而得到测试图像集。表3、表4分别为各算法针对载体图像图3(a)提取的彩色水印和结果,表5、表6分别为各算法针对载体图像图3(a)提取的二值水印图像和结果。

从表3~表6 可以看出:①不管是彩色水印还是二值水印,提出的基于k 的算法总体上均明显优于其余3种算法,而基于四元数的3种算法的鲁棒性均强于Su等[2]的算法,原因在于这3种算法都采用了彩色图像四元数表示方法,而本文算法又充分利用了QDFT 四维系数空间;②本文算法提取的双重水印尽管存在一些噪声污染,但基本都能识别,而对于其他算法有时提取的双重水印都不能识别,有时只能识别一个,其中彩色水印由于包含色彩信息较二值水印更易识别,因此彩色水印不能识别的情况相对更少,当然只要识别出一个,就可认为检测到水印,这就是双重水印的优势;③对于裁剪攻击,由于采用了冗余嵌入策略和Arnold置乱变换,尽管60%的区域被裁剪,但4种算法提取的双重水印基本都能识别。

表3 针对载体图像图3(a)提取的彩色水印及其NC值Table 3 Extracted color watermarks and their corresponding NC values for Fig.3(a)

表4 针对载体图像图3(a)提取的二值水印及其BER 值Table 4 Extracted binary watermarks and their corresponding BER values for Fig.3(a)

表5 针对测试载体图像集提取的彩色水印结果Table 5 Extracted color watermark results for test host image set

表6 针对测试载体图像集提取的二值水印结果Table 6 Extracted binary watermark results for test host image set

4 结束语

针对目前基于QDFT 的彩色图像水印算法存在的诸多不足,本文通过建立QDFT 系数各分量与彩色图像三通道传统DFT 之间的关系,给出了避免水印能量损失问题需要注意的系数对称条件以及充分利用QDFT 四维系数空间的方案。基于QDFT、Arnold变换和冗余嵌入策略,提出了一种彩色图像盲双重水印算法,嵌入有意义的彩色和二值两个水印图像。实验结果表明:本文算法在不可见性和鲁棒性两方面均明显优于现有的两种基于四元数的算法[8,12]和一种基于传统的三通道分别处理思想的算法[2],针对滤波、JPEG压缩、添加噪声和裁剪等攻击具有较强的鲁棒性。

[1]胡玉平,王志坚,张玲华,等.基于小波变换和混沌映射的自适应水印算法[J].吉林大学学报:工学版,2012,42(增刊1):401-404.Hu Yu-ping,Wang Zhi-jian,Zhang Ling-hua,et al.Image-adaptive watermarking algorithm based on chaos map and DWT[J].Journal of Jilin University(Engineering and Technology Edition),2012,42(Sup.1):401-404.

[2]Su Q T,Niu Y G,Liu X X,et al.Embedding color watermarks in color images based on Schur decomposition[J].Opt Commun,2012,285(7):1792-1802.

[3]Hamilton W R.Elements of Quaternions[M].Longmans Green:London,1866.

[4]Ell T A,Sangwine S J.Hypercomplex Fourier transforms of color images[J].IEEE Trans Image Process,2007,16(1):22-35.

[5]Subakan O N,Vemuri B C.A quaternion framework for color image smoothing and segmentation[J].Int J Comput Vis,2011,91(3):233-250.

[6]陈北京,孙星明,王定成,等.基于彩色图像四元数表示的彩色人脸识别[J].自动化学报,2012,38(11):1815-1823.Chen Bei-jing,Sun Xing-ming,Wang Ding-cheng,et al.Color face recognition using quaternion representation of color image[J].Acta Automatica Sinica,2012,38(11):1815-1823.

[7]张富强,李均利,李纲,等.基于四元数奇异值分解的视频质量评价方法[J].电子学报,2011,39(1):219-223.Zhang Fu-qiang,Li Jun-li,Li Gang,et al.Video quality assessment based on quaternion singular value decomposition[J].Acta Electronica Sinica,2011,39(1):219-223.

[8]Bas P,Nihan N L,Chassery J M.Color image watermarking using quaternion Fourier transform[C]∥Proc IEEE Int Conf Acoustics,Speech and Signal Processing,2003:521-524.

[9]Tsui T K,Zhang X P,Androutsos D.Color image watermarking using multidimensional Fourier transforms[J].IEEE Trans Inf Foren Sec,2008,3(1):16-28.

[10]Ma X J,Xu Y,Song L,et al.Color image watermarking using local quaternion Fourier spectral analysis[C]∥Proc 2008IEEE Int Conf Multimedia and Expo,2008:233-236.

[11]Sun J,Yang J Y.A secure color images watermarking algorithm based on holistic quaternion operation[J].Advances in Information Sciences and Service Sciences,2011,10(3):363-374.

[12]江淑红,张建秋,胡波.一种超复数频域的有意义数字水印算法[J].系统工程与电子技术,2009,31(9):2242-2248.Jiang Shu-hong,Zhang Jian-qiu,Hu Bo.Content based image watermarking algorithm in hypercomplex frequency domain[J].Journal of Systems Engineering and Electronics,2009,31(9):2242-2248.

[13]Wang X Y,Wang C P,Yang H Y,et al.A robust blind color image watermarking in quaternion Fourier transform domain[J].J Syst Software,2013,86(2):255-277.

[14]Ell T A.Hypercomplex spectral transforms[D].Minneapolis:Minnesota University,1992.

[15]Sangwine S J.Fourier transforms of colour images using quaternion or hypercomplex,numbers[J].Electron Lett,1996,32(1):1979-1980.

[16]Pei S C,Ding J J,Chang J H.Efficient implementation of quaternion Fourier transform,convolution,and correlation by 2-D complex FFT[J].IEEE Trans Signal Process,2001,49(11):2783-2797.

[17]Zhang Y N,Wen C Y,Zhang Y,et al.On the choice of consistent canonical form during moment normalization[J].Pattern Recogn Lett,2003,24(16):3205-3215.

[18]Zhang H,Shu H Z,Coatrieux G,et al.Affine Legendre moment invariants for image watermarking robust to geometric distortions[J].IEEE Trans Image Process,2011,20(8):2189-2199.

猜你喜欢
二值彩色图像双重
支持CNN与LSTM的二值权重神经网络芯片
基于FPGA的实时彩色图像边缘检测
化解“双重目标”之困
分析师关注对财务重述的双重作用
分析师关注对财务重述的双重作用
基于二值形态学算子的轨道图像分割新算法
行政法上的双重尊重
基于稀疏表示的二值图像超分辨率重建算法
基于最大加权投影求解的彩色图像灰度化对比度保留算法
基于曲率局部二值模式的深度图像手势特征提取