回归定义 重视源头

2015-05-30 17:50:05仲崇林
数学学习与研究 2015年1期
关键词:五角星变化率双曲线

仲崇林

水是有源的,树是有根的.数学定义是解决数学问题的根,是解决数学问题的源.在一些问题的求解中,把握好这个根源,会起到意想不到的效果.利用定义解题,在教科书和高考试题中多有体现.本文仅举几例,以飨读者.

一、利用圆锥曲线定义

例1 (人教版选修(2-1)49页7题)如图,

圆O的半径为定长r,A是圆O内一个定点,

P是圆上任意一点,线段AP的垂直平分线l

和半径OP相交于点Q,当点P在圆上运动

时,点Q的轨迹是什么?为什么?

解 ∵l是线段AP的垂直平分线

∴|QA|=|QP|

∴|QO|+|QA|=|QO|+|QP|=|OP|=r>|OA|.

由椭圆的定义得,点Q的轨迹是以

O,A为焦点的椭圆.

例2 (人教版选修(2-1)62页5题)

如图,圆O的半径为定长r,A是

圆O外一个定点,P是圆上任意一点,

线段AP的垂直平分线l和直线OP相交

于点Q,当点P在圆上运动时,点Q的

轨迹是什么?为什么?

解 仿例1可得:点Q的轨迹是以O,A为焦点的双曲线.

例3 (2009重庆卷)已知以原点O为中心的双曲线的一条准线的方程为x=55,离心率e=5.

(1)求该双曲线的方程;

(2)如图,点A的坐标为(-5,0),B是圆

x2+(y-5)2=1上的点,点M在双曲线

的右支上,求MA+MB的最小值,并求

此时M点的坐标.

解 (1)易得该双曲线的方程为x2-y24=1.

(2)点A(-5,0)为该双曲线的左焦点,右焦点为 A′(5,0).

由双曲线定义得:MA+MB=2+MA′+MB.

所以,当A′,M,B共线时,MA+MB最小.

圆x2+(y-5)2=1的圆心为C(0,5),连接A′C分别交圆和双曲线于B,M点,则MA+MB=2+MA′+MB=1+A′C=1+10.

此时M点的坐标为42-53,45-423.

例4 (2009天津模拟)已知抛物线y2=ax(a>0),直线l过焦点F且与x轴不重合,则抛物线被l垂直平分的弦共有(  ).

A.不存在B.有且只有一条

C.2条 D.3条

解 设抛物线y2=ax(a>0)的焦点为F,

弦MN被直线l垂直平分.

过M,N分别作抛物线准线的

垂线,垂足分别为M1,N1.

∴MM1=MF

NN1=NF

MF=NFMM1=NN1MN∥M1N1.

因此直线MN和x轴垂直,直线l与x轴重合.这与已知l与x轴不重合矛盾.故选A.

二、利用导数定义

例5 (2010江西卷12)如图,一个正

五角星薄片(其对称轴与水面垂直)匀速

地升出水面,记t时刻五角星露出水面部分

面积为S(t)(S(0)=0).则导函数y=S′(t)的图

象大致为(  ).

解 由导数定义可知,函数f(x)在点x=x0处的导数值就是f(x)在点x=x0处的瞬时变化率.当第一个角逐渐露出水面时,S(t)在逐渐增大,且增长速度越来越快,故其瞬时变化率S′(t)也应逐渐增大,当第二部分开始露出水面时,此时的S(t)应突然增大,然后的增长速度越来越慢,但仍为增函数,故其瞬时变化率S′(t)也应突然增大,再逐渐变小,但S′(t)>0(故可排除B);当五角星全部露出水面后,S(t)不再变化,故其导数值S′(t)最终应等于0.

答案 A

三、利用三角函数定义

例6 (2010安徽卷9)动点A(x,y)在圆x2+y2=1上绕坐标原点逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是12,32,则当0≤t≤12时,动点A的坐标y关于t(单位:秒)的函数的单调递增区间是(  ).

A.[0,1] B.[1,7]

C.[7,12]D.[0,1]和[7,12]

解 由三角函数的定义知,三角函数是用来描绘圆周运动的,所以可设y=sin(ωt+φ).

由时间t=0时,点A的坐标是12,32,得φ=π3.

由点A在圆周上逆时针12秒旋转一周,得ω=π6.

∴y=sinπ6t+π3.

当0≤t≤12时,函数y=sin(π6t+π3)的单调递增区间为[0,1]和[7,12],故选D.

猜你喜欢
五角星变化率双曲线
拼五角星
巧摆五角星
基于电流变化率的交流滤波器失谐元件在线辨识方法
湖南电力(2021年4期)2021-11-05 06:44:42
例谈中考题中的变化率问题
“好玩”的五角星
数学大世界(2018年1期)2018-04-12 05:39:02
把握准考纲,吃透双曲线
一道双曲线题的十变式
利用基波相量变化率的快速选相方法
川滇地区地壳应变能密度变化率与强震复发间隔的数值模拟
地震地质(2015年3期)2015-12-25 03:29:53
双曲线的若干优美性质及其应用