康海霞
【摘要】学案导学教学模式在初中数学教学中的应用有助于调动学生主观能动性开发个人数学学习潜力,有助于教学质量、有效性的提升,值得大力推广。本文分析了学案导学模式的概念与特征,并就其在初中数学教学中的应用进行了探讨,希望能为初中数学教学服务。
【关键词】学案导学模式 初中数学 应用
【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2015)11-0127-01
目前国内教育界积极探索基础教育改革创新的可能性,初中数学教学中督促学生转变以往被动学习模式,利用自身主观能动性提升教学质量与有效性是实践关键,是新教学、新学法探索的重点。学案导学教学模式利用学案先学后教、积极导学的特征为学生提供思维渠道,让学生善于利用自身主观能动性解决问题的同时,培养学生个人自学能力,让学生们真正实现会学与好学这两大目标。下面对初中数学教学中学案导学教学模式的应用情况加以探讨。
1.学案导学教学模式解析
1.1学案导学概念
学案导学模式顾名思义,是利用学案加上有效导学完成数学课堂教学,学案与教师常用的教案不同之处在于形成是教学与学生共同努力的结果,是学生发挥个人主观能动性与自主学习能力参与数学学习、探究的过程,以学案为载体,从中可以看到学生思考、解题的思维轨迹,有利于教师更好的把握学生心理特征,高效配合完成教学,是一种教学的新模式。
学案导学模式下学生的个人能力与发展潜力得到了更大限度的挖掘,有利于学生发展、延伸自我能力,追求学习中的自我价值,对于培养、锻炼、提升学生数学综合能力有重要意义。
1.2学案导学特征
学案导学教学模式应用先学后教思想让学生积极在数学学习中展现个人思路,通过教师的积极鼓励让学生尝试应用自己旧知识去联系新知识,完成新旧之间知识结构的衔接,构建出属于自己的新知识框架,在解决问题的过程中发挥个人实践探究与创新解题能力,锻炼个人能力的同时培养主动学习的好习惯,这无疑有利于学生知识的建构。
学案导学模式强调教与学的双方互动,学生不再被动的纯粹接受教师灌输,教师也更注重利用学案巧妙让学生展开探究式、合作式学习,通过发现、思考、解决问题的锻炼过程真正凸显学生的学习主体地位与教师支持地位,从而实现教学全程的和谐统一,让教师真正成为支持学生迅速达到最近发展区的最佳工具。
学案导学模式积极应用新教育理念,强调差异化教学,无论是学案中知识重难点的合理划分,还是针对学生培养目标所指定的基础、强化、拓展、创新等部分,利用梯度化层次教学帮助不同层次学生有所发展,从而让学生自由选择适合自己的层次,改善以往一刀切的尴尬教学问题。
2.初中数学教学中学案导学教学模式的应用情况
2.1学案积极配合教学目标
初中数学教学中应用学案导学模式,要注意学案内容与教学目标的积极配合,遵循一个课时一个学案的教学模式进行标准学案设计,课前提示学生授课新内容以及可能产生的各类重难点问题,让学生提前进行预习,以便学生课堂中快速融入教学氛围,明确教学目标与方向,提升后续学案教学的效率与有效性,也让学生的数学学习变得更加有針对性与目的性。
以对数函数及其性质为例,章节内容学习目标知识上需要学生顺利掌握对数函数的性质及数量变化关系、掌握底数对函数数值变化的影响,要求学生可准确应用数形结合思想进行对比对角,能够通过习题练习顺利掌握对数与指数函数之间的差异,并能够运用数形结合思想解决相关数学问题。围绕这一知识与能力目标,教师要巧妙运用学案导入,通过各种趣味性的学习方法让学生积极感受自主学习与自主探究过程中的乐趣,让他们通过师生互动、互相合作等方式享受成功的喜悦,顺利掌握知识。
2.2学案自学培养学生探究能力
利用学案自学有助于培养学生思考、探究、解决问题的数学综合能力,学生在尝试解题的过程中将会大量联系以往旧知识服务新知识的建构,有利于知识的迁移,并且在教材提供的方法之外,积极探索解题方法的多样性,有助于培养学生独立思考并解决数学能力的自主能力。教师在学生进行自主探究的过程中可利用学案导学作用让他们有针对性的开展探索,从而方便不同层次学生完成对相关内容的系统学习。
以一元二次方程根的判别式定理为例,教师可利用学案让学生进行自主探究式学习。课前准备让学生们积极回顾以往学过的一元一次方程、一元二次方程的相关概念性质与解法,并重点对公式法进行回顾;为配合有效回顾,教师要准备一些不同层次的基础练习题让学生练手,课堂中通过问题法、任务法等巧妙创设各种解题情境,让学生利用以往知识尝试解决新问题,尤其要重点突出授课重难点,让学生在尝试解题的过程中逐渐明晰自己疑难点,从而在后续的学习中更好的把握学习要点。
3.结束语
综上所述,初中数学教学中应用学案导学教学模式有助于激发学生独立自主学习与探究意识,有助于学生数学综合能力的培养与锻炼,值得大力推广。
参考文献:
[1]王赢.初中数学学案分类研究及典型案例分析[D].首都师范大学;2012年
[2]葛冲.高中生物学案设计的理论与实践[D].山东师范大学;2012年