付秀凤
【摘要】“算两次”这种数学方法在数学中又叫做富比尼原理,其基本思想是:把一个量按照两个不一样的角度进行两次计算,然后建立一种等量关系.本文结合高中数学中具体例子探讨了算两次思想方法在高中数学的应用.
【关键词】高中数学解题;算两次思想方法;应用
解析几何中如果要求某个动点的轨迹,一般是按照动点所满足两个条件来建立等式.算两次思想方法在数学竞赛题中也有较多的应用.在高中数学中,教师和学生在解题时也使用算两次思想方法,但是该解题方法没有受到重视,没有从数学思想上认识它,在教师的解题教学中算两次方法被应用的也不多.
1.算两次数学思想方法在数学题中的体现
算两次解题法表现出了从两个方面来解题的特点,从深一层次来说它蕴含的思想是换角度看问题,也就是转化思想.高中数学中转化思想有重要地位与作用,是数学思想精髓.何为转化思想,教育分类学中指出:转化思想把问题从一种形式朝另一种转化,可从语言向图形转化,或从语言向符号转化,或每种情况反转化.这种转化包含数学中数、式和形的转换,又包含心理转换.
哲学上看,转化是用运动、联系与发展的观点来看问题;思想结构上,首先对一些原理、法则与典型问题解法形成深刻认识,遇到复杂问题时,通过寻找其和基本问题关系,化繁为简,化抽象成具体,从而解决问题.基本原则有简单化与熟悉化、正难则反、和谐化与直观化等.新课标下高中数学呈现起点高、容量多和课时紧特点,学生不适应突出,师生迫切强化思想方法,重视思想的教学和应用.
(1)简单化与熟悉化在三角函数中应用.简单化与熟悉化是将复杂的转化为简单的,生疏的转化为熟悉的来解题.简单化与熟悉化是数学解题与探究中常见方法之一,它要通过积累与熟悉基础知识、技能与方法,既是解本题需掌握的技能方法,又是分解转化数学问题的方法.简单化与熟悉花在三角函数中化简、求值与证明中应用广泛.(2)和谐化与直观化在不等式最值中应用.和谐化是指转化的条件与结论,使其形式符合数和形所表示的和谐的形式.直观化是指将抽象问题转化成直观问题解决.恩格斯指出数学是现实的空间形式与数量关系.解析几何促进数形结合,利用代数解决几何题.数学中遇见数、形与式的转化问题,出现函数会联想相关熟悉函数,它的图像、所包含性质和它们的关系等.求解或者验证不等式最值时,可根据条件、形式与特征构造辅助函数,转化问题条件与结论,把原问题转化的研究函数性质,通过数、形、式转化求解.(3)正难则反在证明题和概率题、排列组合中应用.正难则反指问题正面遇到困难,应考虑反面,设法从反面探求.这种问题是经常出现的,可锻炼与提升逆向思维.证明题反证法是应用逆否等价来求证,如恒等式正难则反转化问题,概率和排列组合中出现至多、至少问题,可比较问题与它对立问题的复杂和简单关系解题.
2.算两次法在数学教材解题中的应用
该思想方法是以教材为基础通过对很多道题的解答和证明而获得的,所以说它来自教材,从数学水平和思想上来说又比教材高.在高考数学的命题过程中它是一个重要考查点,高考对它的考查也是以教材为基础的,对于算两次法现在的新数学教材中也出现了好几次,例如在等差数列中求出数列的前n项和公式,在推导中要用到倒序相加法;关于两个角在推导其和、差的余弦公式时也用到了算两次法.但在数学的课堂教学中,算两次思想方法并不被重视,不少一线教师和高三骨干教师,对这种思想方法都知道的不多;还有的认为该数学思想方法对于高中阶段数学学习来说不是重要的,所以就不对它做重点讲解,这就使学生在高考解数学题时如果可以用该思想方法解答,学生就不会运用.学会找出数学思想与对应方法,使学生提高分析与解决问题的水平,从而提高他们的数学素质,要把教材作为基础.
在推导定理与公式时多多运用算两次法,增强学生运用该思想方法来分析與解决数学题的意识.在新出版的高中数学教材中,像那些比较重要而又基础性较强的定理与公式,对它们的结论进行证明时需要使用有创新性的方法,创新性主要是说选择较为合适的角度来计算,更方便地建立等量或者不等量关系,这时算两次法便是一种很好的方法,在课堂教学中教师要注意在讲解这种题型时有效运用算两次法,并让学生听明白,增强学生对该数学思想方法的认识.此外,高中数学课本上有不少定义与公式都有好几种表达形式,像三角形面积公式、解答平面向量数量积时所用公式、圆锥曲线定义等,因为它们有多种表达方式,所以在应用过程中灵活性较强,算两次在理解和解决这些定义与公式时是一种比较合适的方法.在给学生讲解课本上和其他资料上的题时,对那些典型例题与习题要进行深入和多次讲解,方便学生对算两次思想方法的总结.
3.总 结
在立体几何中求两点距离或其他距离经常使用等体积法,这是运用了三棱锥的可换底性质,对三棱锥体积进行两次计算,然后建立等式来求高.算两次法是一种常用到的解题方法,还是一个重要数学思想,在数学课本上它是化归与方程思想的一种表现形式,同时也表现出了换角度思考这种理性思维特点.在使用算两次法来解题时,不必注重其表面形式,重要的是要对该思想方法在本质上认识与理解它.
【参考文献】
[1]任兴发.化归思想在高中函数教学中的应用研究[D].呼和浩特:内蒙古师范大学,2013.
[2]宋丹.例谈整体思想在高中数学解题中的应用[J].学科建设,2011(10):160-161.
[3]刘福根.提高高中生数学解题能力的教学方法研究[D].天津:天津师范大学,2012.
[4]杨光.化归思想在中学数学教学中运用的试验研究[D].天津:天津师范大学,2012.