杨建成
【摘要】数学思想与数学方法的教学是数学教学最为根本的知识,这也是促进学生数学素养提高,形成数学智慧的有效途径。改变当前数学教学效率低下,学生过多大量机械训练的现状最有效的方法就是加强数学思想与数学方法的教学,也就是传授学生“渔”的能力而不是现成的“鱼”,让学生获得自主发展、主动发展、终身发展的能力。
【关键词】数学教学 数学思想 数学方法
在数学教学中,最根本性的知识就是数学思想与数学方法,学生练习过的题目即使成千上万,但留下的只有数学思想与方法,因此,数学教学要特别注重数学思想与方法的渗透,这是让学生形成终身可持续发展能力的基本途径。那么在中学数学教学中如何加强数学思想与数学方法的渗透呢?结合自己的教学实践,谈几点粗浅的认识。
一、树立新的教学观,充分认识数学思想与方法教学的重要意义
数学思想方法是从数学内容中提炼出来的数学学科的精髓,是将数学知识转化为数学能力的桥梁。初中数学思想方法教育,是培养和提高学生素质的重要内容。新的《课程标准》突出强调:“在教学中,应当引导学生在学好概念的基础上掌握数学的规律(包括法则、性质、公式、公理、定理、数学思想和方法)。”因此,开展数学思想方法教育应作为新课改中所必须把握的教学要求。中学数学知识结构涵盖了辩证思想的理念,反映出数学基本概念和各知识点所代表的实体同抽象的数学思想方法之间的相互关系。数学实体内部各单元之间相互渗透和维系的关系,升华为具有普遍意义的一般规律,便形成相对的数学思想方法,即对数学知识整体性的理解。数学思想方法确立后,便超越了具体的数学概念和内容,只以抽象的形式而存在,控制及调整具体结论的建立、联系和组织,并以其为指引将数学知识灵活地运用到一切适合的范畴中去解决问题。数学思想方法不仅会对数学思维活动、数学审美活动起着指导作角,而且会对个体的世界观、方法论产生深刻影响,形成数学学习效果的广泛迁移,甚至包括从数学领域向非数学领域的迁移,实现思维能力和思想素质的飞跃。可见,良好的数学知识结构不完全取决于教材内容和知识点的数量,更应注重数学知识的联系、结合和组织方式,把握结构的层次和程序展开后所表现的内在规律。数学思想方法能够优化这种组织方式,使各部分数学知识融合成有机的整体,发挥其重要的指导作用。
二、紧密结合数学知识教学,加强数学思想与方法渗透
数学知识是数学思想与方法渗透的载体,教师要结合数学知识教学强化思想与方法的渗透。因此,在整个教学过程中,教师要在教学计划中体现数学思想方法教学,明确每一阶段的载体内容、教学目标、展开步骤、教学程序和操作要点。要通过目标设计、创设情境、程序演化、归纳总结等关键环节,在知识的发生和运用过程中贯彻数学思想方法,形成数学知识、方法和思想的一体化。要充分利用数学的现实原型作为反映数学思想方法的基础。数学思想方法是对数学问题解决或构建所做的整体性考虑,它来源于现实原型又高于现实原型,往往借助现实原型使数学思想方法得以生动地表现,有利于对其深人理解和把握。例如:分类讨论的思想方法始终贯穿于整个数学教学中。在教学中要引导学生对所讨论的对象进行合理分类(分类时要做到不重复、不遗漏、标准统一、分层不越级),然后逐类讨论(即对各类问题详细讨论、逐步解决),最后归纳总结。教师要帮助学生掌握好分类的方法原则,形成分类思想。数学思想方法的渗透应根据教学计划有步骤地进行。一般在知识的概念形成阶段导入概念型数学思想,如方程思想、相似思想、已知与未知互相转化的思想、特殊与一般互相转化的思想等等。在知识的结论、公式、法则等规律的推导阶段,要强调和灌输思维方法,如解方程的如何消元降次、函数的数与形的转化、判定两个三角形相似有哪些常用思路等。在知识的总结阶段或新旧知识结合部分,要选配结构型的数学思想,如函数与方程思想体现了函数、方程、不等式间的相互转化,分数讨论思想体现了局部与整体的相互转化。
三、让学生经历知识产生的过程,感悟数学思想与方法
数学知识发生的过程也是其思想方法产生的过程。在此过程中,要向学生提供丰富的、典型的以及正确的直观背景材料,创设使认知主体与客体之间激发作用的环境和条件,通过对知识发生过程的展示,使学生的思维和经验全部投人到接受问题、分析问题和感悟思想方法的挑战之中,从而主动构建科学的认知结构,将数学思想方法与数学知识融汇成一体,最终形成独立探索分析、解决问题的能力。如概念教学,恰当地展示其形成的过程,拉长被压缩了的“知识链”,是对数学抽象与数学模型方法进行点悟的极好素材和契机。在概念的引进过程中,首先要解释概念产生的背景,让学生了解定义的合理性和必要性;其次,揭示概念的形成过程,让学生综合概念定义的本质属性;最后,巩固和加深概念理解,让学生在变式和比较中活化思维。再如,在规律(定理、公式、法则等)的揭示过程中,教师应注意灌输数学思想方法,培养学生的探索性思维能力,并引导学生通过感性的直观背景材料或已有的知识发现规律,不过早地给结论,讲清抽象、概括或证明的过程,充分地向学生展现自己是如何思考的,使学生领悟蕴含其中的思想方法。
四、让学生在综合运用数学思想与方法中深化对数学的理解
教师要善于通过范例教学,选择具有典型性、启发性、创造性和审美性的例题和练习进行。设计具有探索性的范例和能从中抽象一般和特殊规律的范例,在对其分析和思考的过程中展示数学思想和具有代表性的数学方法,提高学生的思维能力。例如,对某些问题,要引导学生尽可能运用多种方法,从各条途径寻求答案,找出最优方法,培养学生的变通性;对某些问题可以进行由简到繁、由特殊到一般的推论,让学生大胆联系和猜想,培养其思维的广阔性;对某些问题可以分析其特殊性,克服惯性思维束缚,培养学生思维的灵活性;对一些条件、因素较多的问题,要引导学生全面分析、系统综合各个条件,得出正确结论,培养其横向思维等等。此外,还要引导学生通过解题以后的反思,优化解题过程,总结解题经验,提炼数学思想方法。同时,引导学生把握知识的整体结构,形成合理的数学模型,通过综合运用数学思想方法,融会贯通各知识点和单元,建立一个以范例和习题为中心的知识网络,纵向加深知识层次,横向联系以发展思维能力,形成全局性的数学思想方法。