赵丽娟,邵燕灵
(中北大学 理学院,山西 太原 030051)
一个极小谱任意的复符号模式
赵丽娟,邵燕灵
(中北大学 理学院,山西 太原 030051)
复符号模式;蕴含幂零;谱任意;幂零—雅可比
若S1=A1+iB1和S2=A2+iB2是两个n×n复符号模式矩阵,如果A2是A1的子模式,且B2是B1的子模式,则称S2是S1的子模式,也称S1是S2的母模式.若S2是S1的子模式,且S2≠S1,则称S2是S1的真子模式.
(3) 替换后的矩阵的特征多项式表达式如下:
(1)
(2)
其中aj,bk为正实数,j,k=1,...,n.
j=1,2,...,n.
则有
将第k行的λ倍加到第k+1行,k=1,...,n-1,再按第2,4...n-3,n-1,n列依次展开,得
定理得证.
定理2 设Sn形如(1),则当n≥5时,Sn及其母模式都是谱任意的.
再把行列式按第1,2,...,2n-6行展开,得
所以Sn及其母模式是谱任意的.证毕.
定理3 设Sn是形如(1)的符号模式,则当n≥5时,Sn是极小谱任意的.
(1)显然,tkk=skk,k=1,n-2.
(2)若T所决定的定性矩阵类里的矩阵是奇异的或是非奇异的,则T都不是谱任意的,所以tk,k+1=sk,k+1,k=1,...,n-1.
[1]DrewJH,JohnsonCR,OleskyDD,etal.Spectrallyarbitrarypatterns[J].LinearAlgebraanditsApplications, 2000, 308(1):121-137.
[2]CaversMS,VanderMeulenKN.Spectrallyandinertiallyarbitrarysignpatterns[J].LinearAlgebraanditsApplications, 2005, 394:53-72.
[3]McDonaldJJ,StuartJ.Spectrallyarbitraryraypatterns[J].LinearAlgebraanditsApplications,2008,429:727-734.
[4]CaversMS,KimIJ,ShaderBL,VanderMeuleKN.Ondeterminingminimalspectrallyarbitrarypattern[J].TheElectronicJournalofLinearAlgebra,2005,13:240-248.
[5]BritzT,McDonaldJJ,OleskyDD,etal.Minimalspectrallyarbitrarysignpatterns[J].SIAMJournalonMatrixAnalysisandApplications, 2004, 26(1):257-271.
[6]GaoYB,ShaoYL,FanYZ.Spectrallyarbitrarycomplexsignpatternmatrices[J].ElectronicJournalofLinearAlgebraanditsApplication,2009,18:674-692.
[7]Jia-YuShao,YLiu,Ling-ZhiRen.Theinverseproblemsofthedeterminantalregionsofraypatternsandcomplexsignpatternmatrices[J].LinearAlgebraanditsApplications,2006,416:835-843.
[责任编辑:王军]
A minimally spectrally arbitrary complex sign pattern
ZHAO Lijuan, SHAO Yanling
(School of Science, North University of China, Taiyuan 030051, China)
complex sign pattern;potentially nilpotent;spectrally arbitrary; nilpotent-jacobian
2015-03-04
山西省回国留学人员科研资助项目(12-070)
赵丽娟(1989-),女,山西大同人,中北大学硕士研究生,主要从事组合数学方面的研究.
O
A
1672-3600(2015)12-0008-05