邓东平,李 亮
(中南大学 土木工程学院,长沙 410075)
锚索预应力长期损失与岩土体蠕变耦合模型研究
邓东平,李 亮
(中南大学 土木工程学院,长沙 410075)
锚索通过反力支座与边坡岩土体紧密接触,当给锚索施加一定预应力后,岩土体同样受到预应力作用而发生形变。该形变不会瞬时完成,而是随时间变化,将导致锚索预应力出现长期损失。将锚索等效成弹性体和广义Kelvin体(考虑锚索应力松弛) 这2种模型,并假设岩土体为考虑蠕变特性的H+nK体(n≤3),结合锚索与岩土体的耦合变形和初始条件,推导出锚索张拉力随时间变化的计算式。经与以往研究成果对比,验证了模型的正确性。同时,研究分析表明,在理论模型中增加岩土体蠕变模型的K体个数及考虑锚索应力松弛现象,可使得拟合曲线更接近于实测的锚索预应力变化。
锚索;蠕变;耦合模型;应力松弛;预应力损失
随着高速铁路和公路的大量建设,边坡加固处置也越来越多[1-4]。预应力锚索作为一种重要的加固措施[5-6],通过调节和提高岩土体的自身强度和自稳能力以达到充分发挥岩土体的自承潜力,从而节约工程材料,并保证施工的安全与稳定[7-8]。同时,随着锚索施工技术的成熟和锚索预应力张拉吨位的增大,预应力锚索在边坡加固工程中的应用也越来越广泛[9]。
然而,预应力锚索能否对岩土体起到有效的加固效果,与其对岩土体形成有效预应力(即预应力的后期损失程度)作用直接相关[10]。对于预应力锚索,引起其预应力损失的情况有2个方面[11]:①锚索张力锁定后短时间内的锚固系统回弹变形;②锚索在荷载作用下,周围锚固岩土体蠕变和钢绞线应力松弛等原因造成的长期预应力损失。对于前者,可通过超张拉弥补,而后者则取决于锚索和岩土体等材料性质,且关系到锚索工程的耐久性和安全性,因而,长期预应力损失成为预应力锚索设计中比较关注的问题[12]。
针对锚索在荷载作用下的长期预应力损失,研究者已开展了一些研究:如高大水等[13-17]在长期监测边坡锚索预应力数据的基础上获得了锚索预应力随时间变化关系;景锋等[18]通过采用室内模型的方法分析岩土体时效变形对锚索预应力损失的影响;范卫琴[19]考虑岩土体存在蠕变性质时采用数值模拟方法研究不同条件对锚索预应力损失的影响;朱晗迓等[20-22]考虑锚索预应力损失和岩土体蠕变耦合而建立模型推导出锚索预应力随时间变化公式。由上可知,目前,在锚索长期预应力损失分析中仍以理论模型研究为主,并采用实测数据对模型进行验证,然后才将研究成果应用于工程实践。然而,锚索预应力损失的影响因素较为复杂,尽管研究者已考虑锚索预应力损失与岩土体蠕变耦合这一符合实际情况的做法,但仍存在如下不足:①未考虑锚索的应力松弛;②岩土体的蠕变模型较为简单,预测精度不高。
本文将锚索等效为弹性体和关于Kelvin体这2种模型,针对松散破碎或软质岩体,假设岩土体为H+nK(n≤3)体,并考虑锚索预应力损失与岩土体蠕变的耦合变形,然后建立锚索预应力随时间变化的计算公式,经与工程算例对比分析,验证了本文方法的可行性。
图1 锚索与岩土体相互作用模型Fig.1 Model of the interaction between anchor cable and geotechnical body
如图1所示,当给锚索施加一定预应力后,锚索内部存在张拉力P,设张拉力通过反力支座作用到岩土体表面的应力均匀分布,大小为σ,反力支座面积为Ar。
在岩土体表面形成一定应力σ后,岩土体在应力σ的作用下将产生压缩形变,由于此过程中锚具紧贴在岩土体上,即锚索端头与岩土体表面发生相同位移,从而导致锚索预应力出现损失。
岩土体一般具有黏性,因此,在预应力作用下岩土体形变不会瞬时完成,而是随着时间的增长逐渐完成,即导致锚索的预应力损失也随时间变化,并最终趋于稳定。
表1 岩土体为蠕变模型时应力相关计算参数Table 1 Stress-related calculation parameters of geotechnical body for creep model
如图2所示,为了描述上述锚索预应力损失与岩土体形变耦合过程,一方面需采用适当的模型模拟锚索和岩土体,另一方面需分析锚索端头与岩土体表面的耦合条件。在图2(a)中,锚索端头与岩土体表面的耦合条件有2个:σs=σ/m和ε=ε1-εs。其中,σs和εs分别为锚索的应力和应变;σ和ε分别为岩土体的应力和应变;m=As/Ar,As为锚索横断面面积,ε1为施加预应力时锚索的初始应变量。在图2(b)中,对于锚索来说,一般情况下可直接采用弹性模型(H体)模拟,然而,在长期预应力作用下锚索会出现应力松弛现象,为此,本文进一步采用广义Kelvin模型(H+K体)来考虑锚索的应力松弛,其中,Es为锚索的弹性模量;E1,η1为考虑锚索应力松弛时K体的弹性模量和黏度系数。在图2(c)中,对于岩土体来说,工程实践和试验分析[20]均表明采用广义Kelvin模型(H+K体)可较好地模拟岩土体的蠕变性质,但是考虑到岩土的复杂性及理论模型对实际模型简化造成的不精确性,本文采用H+nK体模拟岩土体,其中,取n=1,2,3;E11为H体的弹性模量;E21,E22,E23分别为第1,2,3个K体的弹性模量;η21,η22,η23分别为第1,2,3个K体的黏性系数。
图2 锚索与蠕变岩土体耦合模型Fig.2 Coupled model of the anchor cable and the creep geotechnical body
对于岩土体,根据H+nK模型中H体和K体的应力和应变关系,并经拉普拉斯变换可得到H+nK模型(n≤3)的本构关系,即
a0σ+a1σ′+a2σ″+a3σ‴=b0ε+b1ε′+b2ε″+b3ε‴ 。
(1)
式中:σ′,σ″和σ‴为岩土体应力对时间t的1,2,3阶导数;ε′,ε″和ε‴为岩土体应变对时间t的1,2,3阶导数;a0,a1,a2,a3,b0,b1,b2,b3根据岩土体模型中K体的个数n的不同而不同,其计算式如表1和表2。
以下分析锚索为弹性体或广义H+K体(考虑锚索应力松弛)时,锚索与岩土体耦合变形下锚索预应力损失随时间变化的关系。
3.1 锚索为弹性体
当锚索为弹性体(H体)时,由锚索与岩土体的耦合条件,可知岩土体的应力-应变存在如下关系:
表2 岩土体为蠕变模型时应变相关计算参数Table 2 Strain-related calculation parameters of geotechnical body for creep model
(2)
利用式(2)求出岩土体应变ε关于时间t的1,2,3次导数,并代入式(1)中,可得岩土体为H+nK体(n≤3)时的应力微分方程为
c0σ+c1σ′+c2σ″+c3σ‴=d0ε1。
(3)
式中c0,c1,c2,c3,d0根据n的不同而不同,其计算式如表3。
表3 锚索为弹性体时岩土体应力相关计算参数Table 3 Stress-related calculation parameters of geotechnical body for elastomeric anchor cable
通过解式(3),可得岩土体为H+nK体(n≤3)时其应力σ随时间t变化的关系为
σ=a11ε1+a12e-r1t+a13e-r2t+a14e-r3t。
(4)
与前述一致,将施加在锚索上的初始预应力等效为在锚索体上作用初始应变ε1,并以锚索与岩土体开始发生耦合变形时为时间t的0点,此时,设锚索初始张拉力为P0,岩体初始应变分为ε0,则P0,ε0与初始应变ε1满足如下初始条件:
P0=Es(ε1-ε0)As=E11ε0Ar。
(5)
由式(5)得初始应变ε1关于P0和ε0的表达式,将其与P=σAr代入式(4)中,且满足t=0时,P=P0,可得锚索与岩土体耦合变形下岩土体为H+nK体(n≤3)时锚索张拉力P随时间t的关系(即锚索预应力损失),即
P=P0e-r1t+k1(1-e-r1t)+k2(e-r2t-e-r1t)+k3(e-r3t-e-r1t) 。
(6)
式中k1,k2和k3的计算式为
3.2 锚索为广义H+K体
当考虑锚索在长期预应力作用下存在的应力松弛现象,将锚索采用广义H+K体进行模拟,其模型本构方程[23]为
(7)
(8)
ε=ε1-G0σ+G1e-s1t-G2e-s2t。
(9)
式中G0,G1,G2,s1,s2的计算式为
(10)
对式(9)中求岩土体应变ε关于时间t的1,2,3次导数,并将其与式(9)代入式(1)中,可得考虑锚索应力松弛下岩土体为H+nK体(n≤3)时的应力微分方程,即
(11)
(12)
式中a0,a1,a2,a3,b0,b1,b2,b3根据岩土体模型中K体个数n的不同而不同,且与式(1)计算一致。
通过解式(11),可得考虑锚索应力松弛和锚索与岩土体耦合变形下岩土体为H+nK体(n≤3)时其应力σ随时间t的关系,即
σ=a20ε1+a21e-s1t+a22e-s2t+
a23e-r1t+a24e-r2t+a25e-r3t。
(13)
表4 考虑锚索应力松弛下岩土体应力相关计算参数Table 4 Stress-related calculation parameters of geotechnical body in consideration of stress relaxation of anchor cable
同样,将由式(5)得初始应变ε1关于P0和ε0的表达式与P=σAr及t=0时P=P0代入式(13)中,可得考虑锚索应力松弛和锚索与岩土体耦合变形下岩土体为H+nK体时锚索张拉力P随时间t的关系(即锚索预应力损失),即
(14)
通过上述分析和理论公式推导,可知当锚索为弹性体(H体)时,考虑岩土体模型中K体个数n,通过对参数k1,k2,k3,r1,r2,r3部分或全部进行参数拟合可得锚索预应力损失计算公式;当锚索为广义H+K体(考虑锚索应力松弛)时,同样根据岩土体中考虑K体个数n,通过对参数
部分或全部进行参数拟合可得到锚索预应力损失计算公式。同时,锚索的初始预应力P0也作为参数参与拟合。由此,在得到预应力损失计算公式的基础上来预测锚索后期预应力的变化情况。
表5 锚索为弹性体时预应力变化参数拟合值Table 5 Fitted parameters for calculating the change of pre-stress when anchor cable is equivalent to elasticity body
表6 锚索为广义Kelvin体时预应力变化参数拟合值Table 6 Fitted parameters for calculating the change of pre-stress when anchor cable is equivalent to generalized Kelvin body
算例1:朱晗迓等[20]根据相似比例模型对软岩锚索加固预应力变化进行模拟试验,通过试验获得锚索在600 h内锚索预应力随时间变化情况,如图3(a)所示。
算例2:陈安敏等[24]通过实验模型研究锚索张拉吨位随时间变化的规律,获得某根锚索600 h内预应力随时间变化曲线,如图3(b)所示。
算例3:朱晗迓等[20]通过对金丽温高速公路某高边坡典型锚索预应力进行长期观测,获得该段锚索300 d内预应力随时间的变化曲线,如图3(c)所示。
当锚索采用弹性体(H体)模型时,取n分别为1和2,当锚索采用广义Kelvin体(即考虑锚索应力松弛)模型时,取n为1,对上述3个算例的预应力随时间变化曲线进行拟合,得到各参数的拟合值见表5和表6,其拟合曲线与实测曲线对比如图3所示。
注:1为实测曲线;2为n=1时的拟合曲线;3为n=2时的拟合曲线。
从表5、表6和图3中可知:①本文通过理论推导出考虑岩土体蠕变及锚索和岩土体耦合变形得到的锚索预应力变化计算公式可较好地模拟实测锚索预应力随时间变化曲线;②是否将初始预应力作为参数拟合对拟合结果影响很小,不同条件下得到的参数拟合值均满足实际情况;③考虑锚索应力松弛和增加描述岩土体蠕变性质的K体个数对拟合曲线趋近于实测曲线更有利。
(1) 通过与已有试验结果进行对比验证,说明本文对锚索和岩土体模型的假设及考虑其变形耦合符合实际情况,并在一定条件下利用本文模型可以正确预测锚索的预应力随时间的变化。
(2) 考虑锚索应力松弛现象及增加描述岩土体蠕变特性的K体个数对计算模型逼近实测数据更有利。
(3) 在有限监测数据的基础上,可利用本文计算公式对实测曲线进行拟合以得到参数拟合值,进而对锚索长期预应力变化进行预测。
[1] 何思明. 预应力锚索作用机理研究[D]. 成都:西南交通大学,2004:1-14. (HE Si-ming. Study on Mechanism of Pre-stressed Anchor Rope[D]. Chengdu:Southwest Jiaotong University,2004:1-14. (in Chinese))
[2] ZHANG L L, XIA Y Y, GU J C,etal. Test Analysis of Stress Characteristics on Reinforcing Rock Slope with Group Anchorage Cable[J]. Journal of Coal Science and Engineering, 2010, 16(1): 23-28.
[3] ZHU W,ZHANG Y. Effect of Reinforcing the High Jointed Slopes of Three Gorges Flight Lock[J]. Rock Mechanics and Rock Engineering, 1998, 31(1): 63-77.
[4] CARRANZA-TORRES C. Analytical and Numerical Study of the Mechanics of Rockbolt Reinforcement around Tunnels in Rock Masses[J]. Rock Mechanics and Rock Engineering, 2009, 42(2): 175-228.
[5] 韩 斌,郑禄璟,王少勇,等. 复杂破碎露天边坡的综合加固技术[J]. 中南大学学报(自然科学版),2013,44(2):772-777. (HAN Bin, ZHENG Lu-jing, WANG Shao-yong,etal. Synthetic Reinforcement of Complicated and Broken Open Pit Slope[J]. Journal of Central South University (Science and Technology),2013,44(2):772-777. (in Chinese))
[6] 何美丽,刘 霁. 预应力锚索地梁结构在边坡稳定中的作用机理[J]. 中南大学学报(自然科学版),2013,44(6):2543-2548. (HE Mei-li, LIU Ji. Force Transmission Law of Pre-stressed Anchor-rope and Groundsill Structure in Slope Stability[J]. Journal of Central South University (Science and Technology),2013,44(6):2543-2548. (in Chinese))
[7] 李厚恩,秦四清,孙 强. 基坑支护锚杆预应力损失探讨及预测分析[J]. 工程勘察,2007,35(4):7-10. (LI Hou-en,QIN Si-qing,SUN Qiang. Discussion and Prediction Analysis on Pre-stress of Foundation Pit Anchor[J]. Geotechnical Investigation and Surveying,2007,35(4):7-10. (in Chinese))
[8] 叶慧飞. 锚索预应力损失变化规律分析[D]. 杭州:浙江大学,2004:1-10. (YE Hui-fei. Analysis on Pre-stress Loss of Anchorage Cable[D]. Hangzhou: Zhejiang University, 2004: 1-10. (in Chinese))
[9] 蒋楚生,周德培. 非圆弧滑面滑坡中满足平衡条件的预应力锚索设计拉力的确定方法[J]. 铁道学报,2006,28(5):125-128. (JIANG Chu-sheng,ZHOU De-pei. Method for Determining the Designed Pulling Forces of Pre-stressed Cable Anchors Used for Non-circular Slip-surface Landslides under Equilibrium Conditions[J]. Journal of the China Railway Society,2006,28(5):125-128. (in Chinese))
[10]张发明,赵维炳,刘 宁,等. 预应力锚索锚固荷载的变化规律及预测模型[J]. 岩石力学与工程学报,2004,23(1):39-43. (ZHANG Fa-ming,ZHAO Wei-bing,LIU Ning,etal. Long-term Performance and Load Prediction Model of Pre-stressed Cables[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(1):39-43.(in Chinese))
[11]周永江,何思明,杨雪莲. 预应力锚索的预应力损失机理研究[J]. 岩土力学,2006,27(8):1353-1356. (ZHOU Yong-jiang,HE Si-ming,YANG Xue-lian. Study on Pre-stress Loss of Anchor Cables under Long-term Loading[J]. Rock and Soil Mechanics,2006,27(8):1353-1356. (in Chinese))
[12]景 锋,余美万,边智华,等. 预应力锚索预应力损失特征及模型研究[J]. 长江科学院院报,2007,24(5):52-55. (JING Feng,YU Mei-wan,BIAN Zhi-hua,etal. Study on Pre-stress Loss Characteristic and Model of Pre-stressed Cable[J]. Journal of Yangtze River Scientific Research Institute,2007,24(5):52-55.(in Chinese))
[13]高大水,曾 勇. 三峡永久船闸高边坡锚索预应力状态监测分析[J]. 岩石力学与工程学报,2001,20(5):653-656.(GAO Da-shui,ZENG Yong. Monitoring Analysis on Pre-stress State of Anchor Cable of High Slope of the TGP Permanent Ship-locks[J]. Chinese Journal of Rock Mechanics and Engineering,2001,20(5):653-656. (in Chinese))
[14]李端友,汤 平,李亦明. 三峡永久船闸一期工程岩锚预应力监测[J]. 长江科学院院报,2000,17(1):39-42. (LI Duan-you, TANG Ping, LI Yi-ming. Safety Monitoring of Rock Anchor Pre-stress during 1st Stage Construction of TGP’s Permanent Lock[J]. Journal of Yangtze River Scientific Research Institute,2000,17(1):39-42. (in Chinese))
[15]张永安,李 峰. 边坡锚索预应力长期监测成果分析[J]. 工程勘察,2010,38(3):11-14. (ZHANG Yong-an,LI Feng. Analysis on Pre-stress State of Cable Applied to Slope Reinforcement[J]. Geotechnical Investigation and Surveying,2010,38(3):11-14. (in Chinese))
[16]杨志红,郭忠贤. 深基坑加固锚索预应力荷载变化规律的监测分析[J]. 岩土工程学报,2012,34(增刊):145-148. (YANG Zhi-hong,GUO Zhong-xian. Monitoring Analysis of Pre-stressed Load of Anchor Cables for Deep Excavations[J]. Chinese Journal of Geotechnical Engineering,2012,34(Sup.):145-148. (in Chinese))
[17]齐明柱. 预应力锚索框架结构的现场原型试验研究[D]. 北京:铁道科学研究院,2007:56-157. (QI Ming-zhu. Field Prototype Experimental Study on the Concrete Frame Structure with Pre-stressed Anchor Cable[D]. Beijing:Academy of Railway Sciences,2007:56-157. (in Chinese))
[18]景 锋,成传欢,余美万,等. 锚索内锚段荷载分布及其随时间变化规律[J]. 长江科学院院报,2011,28(5):50-54. (JING Feng,CHENG Chuan-huan,YU Me-iwan,etal. Load Distribution and the Law of Its Variation in the Inner Segment of Pre-stressed Anchor Cable[J]. Journal of Yangtze River Scientific Research Institute,2011,28(5):50-54. (in Chinese))
[19]范卫琴. 锚索预应力损失规律的数值模拟[D]. 武汉:武汉理工大学,2007:35-57. (FAN Wei-qin. Numerical Simulation on Pre-stress Loss of Cable-bolt[D]. Wuhan:Wuhan University of Technology,2007:35-57. (in Chinese))
[20]朱晗迓,尚岳全,陆锡铭,等. 锚索预应力长期损失与坡体蠕变耦合分析[J]. 岩土工程学报,2005,27(4):464-467. (ZHU Han-ya,SHANG Yue-quan,LU Xi-ming,etal. Coupling Analysis of Long-term Pre-stress Loss and Slope Creep[J]. Chinese Journal of Geotechnical Engineering,2005,27(4):464-467. (in Chinese))
[21]李英勇,王梦恕,张顶立,等. 锚索预应力变化影响因素及模型研究[J]. 岩石力学与工程学报,2008,27(增1):3140-3146. (LI Ying-yong,WANG Meng-shu,ZHANG Ding-li,etal. Study on Influential Factors and Model for Variation of Anchor Cable Pre-stress[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(Sup.1):3140-3146. (in Chinese))
[22]周永江,何思明,杨雪莲. 预应力锚索的预应力损失机理研究[J]. 岩土力学,2006,27(8):1353-1356. (ZHOU Yong-jiang,HE Si-ming,YANG Xue-lian. Study on Pre-stress Loss of Anchor Cables under Long-term Loading[J]. Rock and Soil Mechanics,2006,27(8):1353-1356. (in Chinese))
[23]周德培,朱本珍,毛坚强. 流变力学原理及其在岩土工程中的应用[M]. 成都:西南交通大学出版社,1995:27-30. (ZHOU De-pei,ZHU Ben-zhen,MAO Jian-qiang. Rheological Mechanics and Its Application in Geotechnical Engineering[M]. Chengdu:Southwest Jiaotong University Press,1995:27-30. (in Chinese))
[24]陈安敏,顾金才,沈 俊,等.软岩加固中锚索张拉吨位随时间变化规律的模型试验研究[J]. 岩石力学与工程学报,2002,21(2):251-256. (CHEN An-min,GU Jin-cai,SHEN Jun,etal. Model Testing Research on the Variation of Tension Force of Anchor Cable with Time in Reinforcement of Soft Rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(2):251-256. (in Chinese))
(编辑:黄 玲)
Coupled Model for the Long-term Pre-stress Loss ofAnchor Cable and Geotechnical Creep
DENG Dong-ping, LI Liang
(College of Civil Engineering, Central South University, Changsha 410075, China)
Anchor cable is closely contacted with geotechnical body through reaction support. After a certain pre-stress is applied on anchor cable, the geotechnical body also deforms under the action of pre-stress. Due to the creep property of geotechnical body, its deformation doesn’t complete instantaneously but changes with time, which causes the long-term loss of pre-stress. In this research, anchor cable is equivalent to two models (elasticity body and generalized Kelvin body), and geotechnical body is assumed to be model ofH+nK(n≤3) which could simulate the creep property of geotechnical body. According to the coupling deformation between anchor cable and geotechnical body and the initial conditions, formulas of calculating the pre-stress of anchor cable with the change of time are obtained. Through comparison with the results of previous studies, the correctness of this model is verified. Moreover, the fitting curve could be more consistent with the measured pre-stress variation if the number ofKin creep model of geotechnical body is increased and the relaxation of anchor cable stress is considered in the theoretical model.
anchor cable; creep; coupling model; stress relaxation; loss of pre-stress
2014-03-13;
2014-04-16
教育部博士研究生学术新人奖项目(114801045);湖南省研究生科研创新项目(CX2012B056);贵州省交通运输厅科技项目(2010-122-020)
邓东平(1985-),男,湖南岳阳人,博士后,从事道路与铁道工程等研究,(电话)13975150476(电子信箱)dengdp851112@126.com
10.3969/j.issn.1001-5485.2015.08.012
TU43
A
1001-5485(2015)08-0065-07
2015,32(08):65-71