景临林,马慧萍,范小飞,2,贾正平
(1.兰州军区兰州总医院 药物研究所,甘肃兰州 730050;2.兰州大学药学院,甘肃 兰州 730000)
1,2,3-三氮唑类化合物具有抗菌[1]、抗肿瘤[2]、抗结核[3]、抗病毒[4]和抗惊厥[5]等多种生物活性。因其结构具有芳香性,不易被生物降解;富含电子,可通过氢键和偶极相互作用与生物大分子紧密结合,而常被作为有效官能团引入现有药物结构中,以改善药物理化性质和药代动力学参数,提高其生物活性[6]。
糖苷类化合物具有良好的抗菌和抗癌活性[7]。在化合物中引入糖苷结构,可增强其水溶性和导向性,改进药理学性质[8]。
席夫碱类化合物具有抗肿瘤[9]、抗菌[10]和抗病毒[11]等广泛的生理活性。席夫碱可通过分子间p-π,π-π堆积和静电效应等作用有效调节药物分子的脂水分配系数,改变药物分子的理化性质,提高生物利用度。
本文根据活性亚结构拼接原理[12],以芳草醛为原料,经醚化和Huisgen-Click反应制得中间体1-(2,3,4,6-四氧乙酰基-β-D-葡萄糖基)-4-(2-甲氧基-4-甲酰基苯氧基)甲基-1,2,3-三氮唑(3);3分别与9种芳胺(4a~4i)反应,合成了9个新型的糖基化三氮唑香草醛席夫碱衍生物(5a~5i,Scheme 1),收率68% ~88%,其结构经1H NMR,IR,EI-MS和元素分析表征。
Scheme 1
X-4B型熔点仪(温度未校正);Brucker-400 MHz型核磁共振仪(CDCl3为溶剂,TMS为内标);NEXUS-670型红外光谱仪(KBr压片);LCMS-API-3200型质谱仪;Vario EL cube型元素分析仪。
乙酰叠氮糖(2)按文献[13]方法合成;732型强酸苯乙烯阳离子交换树脂,炔丙基溴,阿拉丁试剂公司;其余所用试剂均为分析纯;无水溶剂使用前经干燥处理。
(1)3-甲氧基-4-炔丙氧基苯甲醛(1)的合成
在反应瓶中加入香草醛1.5 g(10 mmol),K2CO33.36 g(20 mmol)和无水丙酮100 mL,剧烈搅拌下缓慢加入溴丙炔2 mL,加毕,回流(60℃)反应3 h。加水50 mL,减压除去丙酮,过滤,滤饼依次用水,1 mol·L-1盐酸和水洗涤,干燥得淡黄色固体1,产率 97%,m.p.82.7 ℃ ~83.3 ℃;1H NMR δ:9.88(s,1H,CHO),7.46(m,2H,ArH),7.15(d,J=8.4 Hz,1H,ArH),4.87(d,J=2.0 Hz,2H,CH2),3.95(s,3H,OCH3),2.57(s,1H,C≡CH);ESI-MS m/z:191{[M+H]+}。
(2)3的合成
在反应瓶中加入2 4.48 g(12 mmol),1 1.90 g(10 mmol)和混合溶剂[V(氯仿)∶V(水)=1 ∶1]100 mL,搅拌使其溶解;剧烈搅拌下于40℃依次加入抗坏血酸钠 0.2 mmol和 CuSO4·5H2O 0.1 mmol,反应6 h。冷却至室温,分液,水相用氯仿(2×50 mL)萃取,合并有机相,用无水硫酸钠干燥过夜;抽滤,滤液减压除溶后经快速柱层析[洗脱剂:V(石油醚)∶V(乙酸乙酯)=5∶1]纯化得白色粉末3,产率87%,m.p.62.0 ℃ ~64.1 ℃;1H NMR δ:9.86(s,1H),7.93(s,1H),7.44(d,J=8.0 Hz,1H),7.17(d,J=8.0 Hz,1H),5.90(dd,J=1.6 Hz,6.4 Hz,1H),5.44(d,J=2.0 Hz,2H),5.42(s,2H),5.22 ~5.26(m,1H),4.30(dd,J=4.8 Hz,12.8 Hz,1H),4.15(d,J=12.8 Hz,1H),4.03(dd,J=3.2 Hz,10.0 Hz,1H),3.94(s,3H),2.08(s,3H),2.07(s,3H),2.03(s,3H),1.83(s,3H);IR ν:2 950,2 847,1 750,1 683,1 590,1 511,1 465,1 374,1 224,1 134,1 039,924,810 cm-1;ESI-MS m/z:564{[M+H]+};Anal.calcd for C25H29N3O12:C 53.29,H 5.19,N 7.46;found C 53.36,H 5.20,N 7.65。
(3)5a~5i的合成通法
在三口烧瓶中加入 3 0.42 g(0.75 mmol),4a~4i 1 mmol,冰醋酸 0.2 mL 和无水乙醇 20 mL,氮气保护下回流(80℃)反应6 h~9 h。减压除去部分乙醇,静置,冷却至室温,过滤,滤饼用无水乙醇重结晶得5a~5i。
5a:白色粉末,收率88%,m.p.164.5℃ ~165.9 ℃;1H NMR δ:8.36(s,1H),7.91(s,1H),7.64(s,1H),7.38(d,J=7.6 Hz,2H),7.28(s,1H),7.19(m,3H),7.09(d,J=8.0 Hz,1H),5.88(d,J=8.8 Hz,1H),5.45(m,2H),5.41(s,2H),5.24(t,J=8.7 Hz,1H),4.30(dd,J=4.2 Hz,17.6 Hz,1H),4.14(d,J=12.4 Hz,1H),4.01(dd,J=3.2 Hz,6.8Hz,1H),3.99(s,3H),2.09(s,3H),2.07(s,3H),2.03(s,3H),1.85(s,3H);IR ν:1 751,1 629,1 586,1 509,1 451,1 367,1 230,1 043,927 cm-1;ESI-MS m/z:639{[M+H]+};Anal.calcd for C31H34N4O11:C 58.30,H 5.37,N 8.77;found C 58.46,H 5.42,N 8.85。
5b:白色粉末,收率85%,m.p.183.7℃ ~184.9 ℃;1H NMR δ:8.37(s,1H),7.91(s,1H),7.63(s,1H),7.25(d,J=8.4 Hz,1H),7.19(d,J=8.0 Hz,2H),7.11(d,J=8.0 Hz,2H),7.08(d,J=8.4 Hz,1H),5.88(d,J=8.8 Hz,1H),5.44(m,2H),5.39(s,2H),5.24(m,1H),4.30(dd,J=4.2 Hz,17.6 Hz,1H),4.14(d,J=12.8 Hz,1H),4.01(dd,J=2.8 Hz,6.0 Hz,1H),3.98(s,3H),2.37(s,3H),2.09(s,3H),2.07(s,3H),2.03(s,3H),1.84(s,3H);IR ν:1 748,1 628,1 583,1 511,1 465,1 370,1 231,1 146,1 044,928 cm-1;ESI-MS m/z:653{[M+H]+};Anal.calcd for C32H36N4O11:C 58.89,H 5.56,N 8.58;found C 58.93,H 5.62,N 8.38。
5c:黄色固体,收率75%,m.p.145.6℃ ~147.9 ℃;1H NMR δ:8.26(s,1H),7.91(s,1H),7.65(s,1H),7.31(d,J=7.6 Hz,1H),7.28(d,J=8.0 Hz,2H),7.11(d,J=8.0 Hz,2H),6.90(d,J=7.6 Hz,1H),5.88(d,J=8.8 Hz,1H),5.44(m,2H),5.39(s,2H),5.24(m,1H),4.30(dd,J=4.2 Hz,17.6 Hz,1H),4.14(d,J=12.8 Hz,1H),4.01(dd,J=2.8 Hz,6.0Hz,1H),3.98(s,3H),2.35(s,3H),2.09(s,3H),2.07(s,3H),2.03(s,3H),1.84(s,3H);IR ν:1 748,1 624,1 580,1 510,1 465,1 372,1 228,1 040,922 cm-1;ESI-MS m/z:653{[M+H]+};Anal.calcd for C32H36N4O11:C 58.89,H 5.56,N 8.58;found C 58.88,H 5.72,N 8.36。
5d:白色固体,收率80%,m.p.158.1℃ ~159.3 ℃;1H NMR δ:8.34(s,1H),7.91(s,1H),7.62(s,1H),7.28(d,J=8.8 Hz,1H),7.17(d,J=8.8 Hz,2H),7.08(d,J=8.8 Hz,1H),7.05(d,J=8.8 Hz,1H),5.88(d,J=8.4 Hz,1H),5.45(m,2H),5.40(s,2H),5.24(m,1H),4.30(dd,J=4.8 Hz,17.2 Hz,1H),4.14(d,J=10.8 Hz,1H),4.01(dd,J=3.8 Hz,10.0 Hz,1H),3.94(s,3H),2.09(s,3H),2.07(s,3H),2.03(s,3H),1.84(s,3H);IR ν:1 751,1 626,1 585,1 508,1 467,1 372,1 224,1 040,923 cm-1;ESI-MS m/z:657{[M+H]+};Anal.calcd for C31H33N4O11F:C 56.70,H 5.07,N 8.53;found C 56.84,H 4.94,N 8.65。
5e:白色粉末,收率82%,m.p.164.5℃ ~165.9℃;1H NMR δ:8.33(s,1H),7.91(s,1H),7.61(s,1H),7.35(d,J=8.0 Hz,1H),7.28(d,J=8.0 Hz,2H),7.12(d,J=8.0 Hz,2H),7.09(d,J=8.0 Hz,1H),5.88(d,J=8.8 Hz,1H),5.44(m,2H),5.39(s,2H),5.24(m,1H),4.30(dd,J=4.8 Hz,17.2 Hz,1H),4.14(d,J=12.4 Hz,1H),4.02(dd,J=3.6 Hz,10.0 Hz,1H),3.94(s,3H),2.09(s,3H),2.07(s,3H),2.03(s,3H),1.85(s,3H);IR ν:1 728,1 625,1 578,1 509,1 463,1 369,1 229,1 037,927 cm-1;ESI-MS m/z:673{[M+H]+};Anal.calcd for C31H33N4O11Cl:C 55.32,H 4.94,N 8.32;found C 55.36,H 5.20,N 8.15。
5f:黄色粉末,收率84%,m.p.168.6℃ ~170.9 ℃;1H NMR δ:8.33(s,1H),7.91(s,1H),7.61(s,1H),7.49(d,J=8.4 Hz,2H),7.28(d,J=8.4 Hz,1H),7.09(d,J=8.4 Hz,2H),7.06(d,J=8.4 Hz,1H),5.88(d,J=8.4 Hz,1H),5.44(m,2H),5.39(s,2H),5.24(m,1H),4.30(dd,J=4.8 Hz,17.2 Hz,1H),4.14(d,J=12.4 Hz,1H),4.02(dd,J=4.4 Hz,10.8 Hz,1H),3.98(s,3H),2.09(s,3H),2.07(s,3H),2.03(s,3H),1.85(s,3H);IR ν:1 750,1 628,1 580,1 512,1 466,1 371,1 226,1 034,928 cm-1;ESI-MS m/z:717{[M+H]+};Anal.calcd for C31H33N4O11Br:C 51.89,H 4.64,N 7.81;found C 52.01,H 4.45,N 7.91。
5g:黄色粉末,收率68%,m.p.164.2℃ ~165.4 ℃;1H NMR δ:8.36(s,1H),7.93(s,1H),7.63(s,1H),7.49(d,J=8.0 Hz,1H),7.44(d,J=8.0 Hz,1H),7.30(d,J=8.0 Hz,2H),7.10(d,J=8.0 Hz,1H),5.89(d,J=8.4 Hz,1H),5.44(m,2H),5.37(s,2H),5.25(m,1H),4.30(dd,J=4.8 Hz,17.2 Hz,1H),4.15(d,J=12.4 Hz,1H),4.02(dd,J=3.2 Hz,10.6 Hz,1H),3.98(s,3H),2.09(s,3H),2.07(s,3H),2.03(s,3H),1.85(s,3H);IR ν:1 750,1 637,1 587,1 510,1 462,1 372,1 256,1 231,1 044,928 cm-1;ESI-MS m/z:684{[M+H]+};Anal.calcd for C31H33N5O13:C 54.46,H 4.87,N 10.24;found C 54.29,H 4.92,N 10.35。
5h:白色粉末,收率88%,m.p.176.5℃ ~177.9 ℃;1H NMR δ:8.36(s,1H),7.91(s,1H),7.62(s,1H),7.23(d,J=8.4 Hz,1H),7.14(d,J=8.4 Hz,2H),7.05(d,J=8.4 Hz,1H),6.85(d,J=8.4 Hz,2H),5.98(s,1H,OH),5.87(d,J=8.4 Hz,1H),5.45(m,2H),5.40(s,2H),5.22 ~ 5.27(m,1H),4.30(dd,J=4.8 Hz,17.2 Hz,1H),4.15(d,J=12.8 Hz,1H),4.03(dd,J=3.6 Hz,10.0 Hz,1H),3.94(s,3H),2.09(s,3H),2.07(s,3H),2.03(s,3H),1.85(s,3H);IR ν:3 393,1 753,1 624,1 583,1 510,1 468,1 370,1 266,1 226,1 044,928 cm-1;ESI-MS m/z:655{[M+H]+};Anal.calcd for C31H34N4O12:C 56.88,H 5.24,N 8.56;found C 56.92,H 5.20,N 8.65。
5i:白色粉末,收率79%,m.p.156.1 ℃ ~157.2 ℃;1H NMR δ:8.36(s,1H),7.93(s,1H),7.63(s,1H),7.51(s,1H),7.49(m,3H),7.44(d,J=8.0 Hz,1H),7.10(d,J=8.0 Hz,1H),5.90(d,J=8.4 Hz,1H),5.45(m,2H),5.37(s,2H),5.25(m,1H),4.30(dd,J=4.8 Hz,17.2 Hz,1H),4.15(d,J=12.4 Hz,1H),4.02(dd,J=3.2 Hz,10.6 Hz,1H),3.98(s,3H),2.09(s,3H),2.07(s,3H),2.03(s,3H),1.85(s,3H);IR ν:1 751,1 636,1 588,1 511,1 465,1 373,1 255,1 234,1 038,919,764 cm-1;ESI-MS m/z:707{[M+H]+};Anal.calcd for C32H33N4O11F3:C 54.39,H 4.71,N 7.93;found C 54.46,H 4.60,N 8.02。
(1)3的合成条件优化
以Cu(I)为催化剂,端基炔和2进行1,3-偶极环加成反应(Huisgen-Click反应),是合成3的关键步骤。通过对反应溶剂,催化剂,反应温度和反应时间的优化,最终确定合成2的较优反应条件为:以氯仿/水[V(氯仿)∶V(水)=1 ∶1]为溶剂,CuSO4·5H2O/抗坏血酸钠为催化剂,于40℃反应6 h,收率87%。
(2)5的合成条件优化
合成5时,传统方法多以乙醇为溶剂,以酸或碱为催化剂。为避免糖苷中的乙酰基发生水解或醇解反应,实验中采用乙醇为溶剂,乙酸为催化剂,同时通过控制投料比,反应时间和反应温度等因素,以较高的收率(68% ~88%)合成了4。
(1)1H NMR
3的1H NMR分析可见,δ 9.86处的单峰为3中醛基的质子吸收峰,δ 7.93处的单峰为三氮唑中的质子吸收峰,说明分子结构中引入了三氮唑基团;δ 5.42处的单峰为亚甲基的质子吸收峰,δ 3.94处的单峰为OCH3的质子吸收峰,δ 1.85~2.09附近的四个单峰为糖环结构中乙酰基的质子吸收峰。当3转化为5,δ 9.85处醛基的质子吸收峰消失,δ 8.36处出现席夫碱分子中醛亚胺结构的质子吸收峰,δ 7.00~7.50附近的质子吸收峰数量增加,归属为取代芳胺中的质子。
(2)IR
IR分析可见,2 850 cm-1处特征峰为3醛基中C-H的特征吸收峰;1 750 cm-1处特征峰为3乙酰基中羰基的特征吸收峰;1 680 cm-1处特征峰为3醛基中羰基的特征吸收峰;1 600 cm-1,1 500 cm-1和1 400 cm-1处特征峰为3苯环骨架振动吸收峰;1 200 cm-1和1 050 cm-1处强吸收峰为3中C-O伸缩振动吸收峰。当3转变为5时,1 680 cm-1和2 850 cm-1处的醛基特征吸收峰消失,1 630 cm-1附近出现醛亚胺结构的特征吸收峰,说明了席夫碱的生成。
(3)元素分析
元素分析表明,5的实验值与理论值误差均低于0.3%,说明合成的5与分子设计一致。
根据活性亚结构拼接原理,以芳草醛为原料,经醚化和Huisgen-Click反应制得中间体1-(2,3,4,6-四氧乙酰基-β-D-葡萄糖基)-4-(2-甲氧基-4-甲酰基苯氧基)甲基-1,2,3-三氮唑(3);3 分别与 9种芳胺(4a~4i)反应,合成了9个新型的糖基化三氮唑香草醛席夫碱衍生物(5a~5i),收率68% ~88%。5a~5i的药理活性正在进一步研究中。
[1]Garudachari B,Isloor A M,Satyanarayana M N,et al.Click chemistry approach:Regioselective one-pot synthesis of some new 8-trifluoromethylquinoline based 1,2,3-triazoles as potent antimicrobial agents[J].Eur J Med Chem,2014,74(C):324 -332.
[2]Duan Y C,Ma Y C,Zhang E,et al.Design and synthesis of novel 1,2,3-triazole-dithiocarbamate hybrids as potential anticancer agents[J].Eur J Med Chem,2013,62:11 -19.
[3]Addla D,Jallapally A,Gurram D,et al.Rational design,synthesis and antitubercular evaluation of novel 2-(trifluoromethyl)phenothiazine[1,2,3]triazole hybrids[J].Bioorg Med Chem Lett,2014,24(1):233 -236.
[4]Jordao A K,Afonso P P,Ferreira V F,et al.Antiviral evaluation of N-amino-1,2,3-triazoles against cantagalo virus replication in cell culture[J].Eur J Med Chem,2009,44(9):3777 -3783.
[5]Ulloora S,Shabaraya R,Adhikari A V.Facile synthesis of new imidazo[1,2-a]pyridines carrying 1,2,3-triazoles via click chemistry and their antiepileptic studies[J].Bioorg Med Chem Lett,2013,23(11):3368-3372.
[6]Tron G C,Pirali T,Billington R A,et al.Click chemistry reactions in medicinal chemistry:applications of the 1,3-dipolar cycloaddition between azides and alkynes[J].Med Res Rev,2008,28(2):278 -308.
[7]Fernández H M A,López M,Hernández V J M,et al.Synthesis and biological evaluation of the glycoside(25R)-3β,16β-diacetoxy-22-oxocholest-5-en-26-yl-βd-glucopyranoside:A selective anticancer agent in cervicouterine cell lines[J].Eur J Med Chem,2011,46(9):3877-3886.
[8]Toshima K,Tatsut A K.Recent progress in O-glycosylation method and its application to natural products synthesis[J].Chem Rev,1993,93(4):1503 -1531.
[9]Gökhan C,Muhammet K,Mehmet T,et al.Structural characterization of some Schiff base compounds:Investigation of their electrochemical,photoluminescence,thermal and anticancer activity properties[J].Journal of Luminescence,2013,143:623 -634.
[10]Bharti S K,Nath G,Tilak R,et al.Synthesis,antibacterial and anti-fungal activities of some novel Schiff bases containing 2,4-disubstituted thiazole ring[J].Eur J Med Chem,2010,45(2):651 -660.
[11]Kumar K S,Ganguly S,Veerasamy R,et al.Synthesis,antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4(3)H-ones[J].Eur J Med Chem,2010,45(11):5474 -5479.
[12]刘敏,章文军,高宁.拼合原理及其在新药设计中的应用[J].化学试剂,2009,10:795 -797,850.
[13]李一鸣.以叠氮糖为中间体设计合成具有生物活性的杂环化合物[D].天津:南开大学,2010:38-39.