付深振 戴闻韬, 费 烨 彭江南 闫兴丽 高增平
(1 北京中医药大学,北京,100102; 2 University of Texas Health Science Center at San Antonio,Texas 78229,USA)
圆叶大黄的化学成分及细胞毒活性初步研究
付深振1戴闻韬1,2费 烨1彭江南2闫兴丽1高增平1
(1 北京中医药大学,北京,100102; 2 University of Texas Health Science Center at San Antonio,Texas 78229,USA)
目的:研究圆叶大黄(RheumTataricumL.F.)的化学成分及主要成分的细胞毒活性。方法:采用silica gel、Sephadex LH-20、HPLC等色谱法对圆叶大黄80﹪乙醇提取物进行分离纯化,通过LC/MS,1H-NMR,13C-NMR,2D-NMR和薄层色谱检识等技术,结合相关文献确定化合物的结构;运用SRB法对分离得到的主要成分进行Hela细胞的细胞毒活性筛选。结果:从圆叶大黄中分离鉴定出11个化合物,分别为大黄酚(1),大黄素(2),大黄素甲醚(3),芦荟大黄素(4),Rheosmin(5),1,3,8-trihydroxyanthraquinone(6),β-谷甾醇(7),胡萝卜苷(8),大黄素-1-O-β(6'-O-acety)glucopyranoside(9),大黄素甲醚-8-O-β(6'-O-acety)glucopyranoside(10),大黄酚-1-O-β(6'-O-acety)glucopyranoside(11);对化合物4、5、6、9、10、11进行了细胞毒活性筛选,其中化合物4、6、9、10、11均对Hela细胞具有细胞毒活性,化合物5对Hela细胞无细胞毒活性。结论:8个化合物(化合物4-11)均为首次从该植物中分离得到,5个化合物对Hela细胞有细胞毒活性,且化合物5,6,9,10,11均为首次对Hela细胞进行细胞毒活性筛选。
圆叶大黄;化学成分;细胞毒活性
圆叶大黄(RheumTataricumL.F.)为蓼科(Polygonaceae)大黄属多年生中型草本植物,别名鞑靼大黄,在我国主要分布于新疆西部地区,另在阿富汗、俄罗斯、哈萨克斯坦也有分布[1],在俄罗斯当地可做蔬菜食用[2],在我国尚未有食用和药用价值的相关报道。但是在西藏市场上发现其作为藏药塔黄有销售。塔黄为蓼科大黄属高山大黄[3-5](RheumnobileHook.f.et Thoms)的根和根茎,产于西藏喜马拉雅山麓及云南西北部,在藏医中用于治疗黄水[3,6]、恶性腹水、肾水肿、“培根”病[7-8]等,在印度、锡金等国也被广泛作为药用[9]。对于究竟圆叶大黄能否代替塔黄入药尚未见相关研究报道,因此本课题组在研究藏药塔黄的基础上初步探索了圆叶大黄的化学成分和其主成分的细胞毒活性,为全面对比藏药塔黄与圆叶大黄的化学成分和药理活性,确保藏药塔黄的用药安全和有效奠定基础。
药材:购自西藏拉萨,经北京中医药大学魏胜利副教授鉴定为蓼科大黄属圆叶大黄RheumTataricumL.F.的根茎。仪器:Bruker-Avance VNS-600和Bruker AVANCE-III-500 mHz型核磁共振仪,Waters高效液相色谱仪,薄层色谱硅胶及柱色谱硅胶均为青岛海洋化工厂生产,AB-8型大孔树脂为天津南开大学化工厂生产,Sanyo CO2Incubator,Molecular Devices Spectra max。试剂:所用试剂均为分析纯。Hela细胞购自于American Type Culture collection,Basal Medium eagle,trypsin购自于Sigma Life Science。
药材粗粉10 kg,80%乙醇回流提取三次,2 h/次。减压回收溶剂得到浸膏,加水分散,依次用石油醚、氯仿、乙酸乙酯、正丁醇萃取,分别得到五个部位。石油醚部位,经反复硅胶柱色谱分离及重结晶,得到化合物1(891.4 mg),化合物2(16.5 mg),化合物3(86.6 mg),化合物4(41 mg),化合物5(5 mg)。乙酸乙酯部位,经反复硅胶柱色谱,HPLC以及重结晶,得到化合物6(25 mg),化合物7(10 mg),化合物8(84.4 mg),化合物9(30 mg),化合物10(20 mg),化合物11(5 mg)。
化合物1,化合物2,化合物3,化合物7,化合物8经与对照品进行TLC对比(三个溶剂展开系统),分别为大黄酚,大黄素,大黄素甲醚,β-谷甾醇和胡萝卜苷,化合物5经1H-NMR(600 mHz,DMSO)确定其结构为Rheosmin。化合物4:黄色结晶。1H-NMR(600 MHz,DMSO)δ:7.261(1H,s,H-2),7.651(1H,s,H-4),7.684(1H,d,J=7.2 Hz,H-5),7.778(1H,t,J=7.8Hz,H-6),7.345(1H,d,J=8.4 Hz,H-7)。13C-NMR(600 MHz,DMSO)δ:161(C-1),120.5(C-2),153.7(C-3),117.1(C-4),119.2(C-5),137.4(C-6),123.7(C-7),161(C-8),191.4(C-9),181(C-10),114.5(C-11),135.1(C-12),114.4(C-13),136.5(C-14)。以上数据与芦荟大黄素文献报道的数据一致[10-11],故鉴定该化合物为芦荟大黄素。化合物6:黄色粉末。1H-NMR(600 MHz,DMSO)δ:7.748(1H,s,H-2),8.134(1H,s,H-4),7.737(1H,d,J=6.6 Hz,H-5),7.827(1H,t,J=6.6 Hz,H-6),7.411(1H,d,J=7.2 Hz,H-7)。13C-NMR(600 MHz,DMSO)δ:161.6(C-1),124.4(C-2),166.2(C-3),119.4(C-4),119.9(C-5),138.1(C-6),125.2(C-7),161.8(C-8),191.9(C-9),181.8(C-10),111.8(C-11),133.8(C-12),119.1(C-13),139.7(C-14)。以上数据与1,3,8-trihydroxyanthraquinone的文献报道一致[12],故鉴定该化合物为1,3,8-trihydroxyanthraquinone。化合物9:黄色粉末。ESI-MS:m/z 474[M]+,497[M+Na]+;1H-NMR(600 MHz,DMSO)δ:6.949(1H,s,H-2),7.289(1H,s,H-4),7.445(1H,s,H-5),7.147(1H,s,H-7),5.218(1H,d,H-1'),3.450(1H,dd,J=5.4,7.2Hz,H-2'),3.29-3.376(H-3',H-4' overlapped with H2O),3.686(1H,J=1.2,7.2,10.2 Hz,H-5'),4.100(1H,J=6.0,10.2Hz,H-6'),4.309(1H,J=7.2,10.2Hz,H-6')。以上数据与emodin-8-O-β(6'-O-acety)glucopyranoside的文献报道一致[13],故鉴定该化合物为emodin-8-O-β(6'-O-acety)glucopyranoside。化合物10:黄色粉末。ESI-MS:m/z 488[M]+,511[M+Na]+;1H-NMR(600 MHz,DMSO)δ:7.151(1H,s,H-2),7.392(1H,s,H-4),7.463(1H,s,H-5),7.126(1H,s,H-7),5.219(1H,d,J=6.6 Hz,H-1'),3.482(1H,dd,J=4.3,6.6 Hz,H-2'),3.300(1H,t,J=4.3 Hz,H-3'),3.243(H-4',overlapped with water),3.752(1H,ddd,J=2.6,6.2,9.3 Hz,H-5'),4.056(1H,dd,J=6.2,9.3 Hz,H-6'),4.348(1H,dd,J=2.6,9.3 Hz,H-6')。以上数据与physcion-1-O-β(6'-O-acety)glucopyranoside的文献报道一致[14],故鉴定该化合物为physcion-1-O-β(6'-O-acety)glucopyranoside 。化合物11:黄色粉末。ESI-MS:m/z 458[M]+,481[M+Na]+;1H-NMR(600 MHz,DMSO)δ:2.007(3H,s,-OAc),2.48(3H,s,Me),7.497(1H,s,H-2),7.725(1H,s,H-4),7.633(1H,d,J=0.6 Hz,H-5),7.725(1H,br.s,H-6),7.317(1H,d,J=6.0 Hz,H-7),5.219(1H,d,J=6.6 Hz,H-1'),3.489(1H,dd,J=4.2,6.6 Hz,H-2'),3.357(1H,t,J=4.2 Hz,H-3'),3.250(H-4',overlapped with H2O),3.723(1H,ddd,J=2.4,6.0,9.0 Hz,H-5'),4.050(1H,dd,J=6.0,9.0Hz,H-6'),4.362(1H,dd,J=2.4,9.0 Hz,H-6'),12.940(s,OH-8)。以上数据与,chrysophanol-1-O-β(6'-O-acety)glucopyranoside的文献报道一致[13],故鉴定该化合物为chrysophanol-1-O-β(6'-O-acety)glucopyranoside。
4.1 试验方法 Hela细胞BME(Basal Medium Eagle)培养基,置于37 ℃细胞培养箱中24 h后,分别加入浓度为20 μg/mL的化合物4,化合物5,化合物6,化合物9,化合物10,化合物11,DMSO为对照。给药后置于37 ℃细胞培养箱中48 h,然后采用SRB法[15-16]进行细胞毒活性筛选及分析。
4.2 实验结果 经SRB法分析,结果化合物5对Hela细胞没有细胞毒活性,另外5个化合物对Hela细胞有不同程度的细胞毒活性。其中活性最强的是化合物4,细胞数为对照(DMSO)的20.6%,活性最弱的为化合物9,细胞数为对照的90.1%,化合物6,10和11的细胞数分别为对照的35.5%,52.57%和53.0%。
通过对圆叶大黄的化学成分进行初步研究,共得到11个化合物,其中8个化合物(化合物4-11)为首次从该植物中分离得到,进而为圆叶大黄与塔黄的化学成分对比提供了部分依据;对其中的六个化合物进行针对Hela细胞的细胞毒活性的初步筛选,SRB分析结果为其中化合物4、6、9、10、11对Hela细胞有不同程度的细胞毒活性,化合物5对Hela细胞无细胞毒活性,这为圆叶大黄与塔黄的药理活性对比提供依据;五个对Hela细胞有细胞毒活性的化合物均为蒽醌或其苷类,这将为进一步的研究蒽醌及其苷类化合物的细胞毒活性奠定基础。总之,通过对圆叶大黄化学成分及部分成分的细胞毒活性研究,为其进一步的与塔黄进行比较研究奠定基础,从而确定圆叶大黄是否可以代替藏药塔黄使用,以确保藏药塔黄的市场规范和用药安全。
[1]中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1998:199.
[2]Chumbalov,T.K.Results of studying the chemical composition of Kazakhstan vegetable raw material[J].Khimiyai Khimicheskaya Tekhnologiya,1970,71(1):150.
[3]国家中医药管理局编委会.中华本草·藏药卷[M].上海:科学技术出版社,1999:260.
[4]Bo Song,Zhang Zhi-qing,Jürg Stöcklin,et al.Multifunctional bracts enhance plant fitness during flowering and seed development in Rheum nobile(Polygonaceae),a giant herb endemic to the high Himalayas[J].Oecologia,2013(172):359-370.
[5]Ichiro Terashima,Takehiro Masuzawa,Hideaki Ohba.Photosynthetic characteristics of a giant alpine plant,Rheum nobile Hook.f.et Thoms and of some other alpine species measured at 4300 m,in the Eastern Himalaya,Nepal[J].Oecologia,1993,95(2):194-201.
[6]阿召.浅论藏医“黄水证”[J].西部中医药,2011,24(8):63-64.
[7]宇妥·云丹贡布.四部医典[M].上海:上海科学技术出版社,1987:77.
[8]才项仁增.浅谈藏医三因学之培根及培根病[J].西部中医药,2011,24(7):58-60.
[9]P.Prasad,L.K.Rai,H.Birkumar Singh.Folk Medicinal Plants in the Sikkim Himalayas of India[J].Asian Folklore Studies,2002(61):295-310.
[10]Danielsen,Knut;Aksnes,Dagfinn W.NMR study of some anthraquinones from Rhubarb.Magnetic Resonance in Chemistry,1992,30(4):359-360.
[11]魏玉辉,张承忠,李冲,等.光茎大黄化学成分研究(Ⅰ)[J].中草药,2004,35(7):732-734.
[12]Anslow,W.K.B,reen,J,Raistrick,H.1,3,8-trihydroxyanthraquinone[J].Journal of the chemical society,1940:427-428.
[13]Ya Qinshi,Toshio Fukai et al.Cytotoxic and DNA damage-inducing actives of low molecular weight phenols from Rhubarb.Anticaner research,2001,21(4a):2847.
[14]Qi Huan.Three new anthraquinones from Polygonum cillinerve .Chinese chemical letters,2005,16(8):1050.
[15]Philip Skehan,Ritsa Storeng et al.New colorimetric cytotoxicity assay for anticancer-drug screening[J].Journal of the National Cancer Institute,1990,82(13):1107-1112.
[16]Vichai V,Kirtikara K.Sulforhodamine B colorimetric assay forcytotoxicity screening[J].Nature Protocol,2006,1(3):1112-1116.
(2014-03-09收稿 责任编辑:徐颖)
Primary Study on Chemical Constituents of Rheum Tataricum L.F.and Their Cytotoxic Activity
Fu Shenzhen1,Dai Wentao1,2,Fei Ye1,Peng Jiangnan2,Yan Xingli1,Gao Zengping1
(1BeijingUniversityofChineseMedicine,Beijing100102,China; 2UniversityofTexasHealthScienceCenteratSanAntonio,Texas78229,USA)
Objective: To investigate the chemical constituents of the Rheum Tataricum and evaluate some of the compounds for cytotoxic activity against Hela cell.Methods:Silica gel,Sephadex LH-20 column,chromatography High Performance Liquid Chromatography methods were used to do isolation.The structures of isolates were confirmed by spectral (LC/MS,1H-NMR,13C-NMR,2DNMR,thin-layer chromatograph) analysis and by comparison with the literature reports; Cytotoxic activities were determined by the SRB method.Results:Eleven compounds were gained and they were chrysophanol (1),emodin(2),Physcion (3),Aloe-emodin (4),Rheosmin (5),1,3,8-trihydroxyanthraquinone (6), Sitosterol (7), Daucosterol (8),emodin8-O-β(6'-O-acety)glucopyranoside (9),physcion1-O-β(6'-O-acety)glucopyranoside (10),chrysophanol1-O-β(6'-O-acety)glucopyranoside (11); six compounds were evaluated for cytotoxic activities,five of them showed cytotoxic activity against Hela cell,and they were Aloe-emodin,1,3,8-trihydroxyanthraquinone,emodin8-O-β(6'-O-acety)glucopyranoside,physcion1-O-β(6'-O-acety)glucopyranoside,chrysophanol1-O-β(6'-O-acety)glucopyranoside,rheosmin has no activity.Conclusion:Eight (compound 4-11)of them are isolated from Rheum nobile for the first time; five of the compounds show cytotoxic activities,compound5,6,9,10,11are evaluated for cytotoxic activities against Hela cell for the first time.
Rheum Tataricum; Chemical consitutents; Cytotoxic activity
R28
A
10.3969/j.issn.1673-7202.2015.01.029