张红欣 韩鲁军 安召伟 许会军 胡智慧 李 颖
1.石家庄市第一医院肿瘤一科,河北石家庄 050011;2.石家庄市第一医院肿瘤二科,河北石家庄 050011;3.石家庄市第一医院放疗科,河北石家庄 050011;4.河北医科大学附属第四医院肿瘤内科,河北石家庄 050011
蒽环类药物(anthracycline)是一类重要的抗癌药物,由20 世纪70 年代发展起来[1]。对造血系统肿瘤和实体肿瘤具有确切的疗效。 表阿霉素(Epirubicin,EPI)是该类药物的代表,是一类细胞周期非特异性化疗药[2],其抗癌化疗的范围广,疗效高且对于乏氧细胞同样有效[3]。 EPI 是重要的一线抗癌药物之一,在临床肿瘤化疗方面有着不可替代的地位,对肺癌、淋巴瘤、乳腺癌等多种恶性肿瘤均有较好的疗效,是多种化疗方案的核心[4-6]。 临床上为提高疗效,通常用较大剂量的蒽环类药物,因此不良反应也相应增多,有研究显示[7]其存在着剂量累积性的心脏毒性,阻碍了在临床上的长期应用,而且会威胁肿瘤患者的寿命和生存质量。 还原型谷胱甘肽(reduced glutathione,GSH)是谷胱甘肽的活性成分,由谷氨酸、半胱氨酸和甘氨酸组成,能参与体内氧化还原过程[8]。 研究表明[9],补充GSH 可以阻断氧自由基,减轻和终止其对于细胞的损伤,保护人体的重要器官。 但其对于EPI 所致心肌毒性的作用机制的研究尚少, 经研究发现GSH 能够有效改善EPI 所致心脏毒性引发的各种临床症状,笔者通过观察患者治疗后的心电图异常率、 射血分数、心肌肌钙蛋白T(cTnT)以及心肌酶谱水平的改善情况,来探究GSH 对EPI 所致心脏毒性的保护作用, 现报道如下:
病例来源为石家庄市第一医院2013 年1~12 月收治住院的患者60 例,均为女性,经病理学检查确诊为乳腺癌,所有患者均行乳腺癌根治术或改良根治术,并需要辅助化疗。 按随机数字表法将其分为两组,即EPI 组和GSH+EPI 组,每组各30 例。 两组患者在平均年龄、病程及卡氏行为状态评分(KPS)等方面比较差异无统计学意义(P >0.05),具有可比性。 见表1。
表1 两组患者一般资料比较()
表1 两组患者一般资料比较()
注:EPI:表阿霉素;GSH:还原型谷胱甘肽
?
所有患者经病理检查确诊为乳腺癌,TNM 分期为Ⅱ期,患者同意进行联合化疗,并签署知情同意书;实验前心电图、肌钙蛋白、肝肾功能均正常。
心、肝、肾系统疾病患者;存在化疗禁忌证;有胸部放射治疗史;实验前接受过蒽环类药物者;近期有重大外伤、手术者;过敏体质者;不愿参加实验及不合作者;精神病患者等。
根据临床用药指南[10],EPI 组采用环磷酰胺+EPI的化疗方案,其中环磷酰胺0.8 g,第1 天静脉推注;EPI 90 mg/m2,分别于第1、8 天等分静脉滴注。GSH+EPI组在上述化疗方案的基础上给予GSH(重庆药友制药有限责任公司,国药准字H19991067)1500 mg/m2+5%葡萄糖250 mL,静脉滴注15 min,从化疗第1 天起,1次/d,连用8 d。 全部患者化疗21 d 为1 个周期,连续化疗6 个周期。 用药期间定期检查血象,维持中性粒细胞的绝对值大于1.5×109/L, 低于该值则延期治疗,并注意戒烟酒,合理饮食。
1.5.1 心电图、 超声心动图检测 所有患者于化疗前、化疗3 个周期及6 个周期后接受心电图和超声心动图检查。 对于化疗后出现的心律失常、传导阻滞和ST-T 段改变记为心电图异常, 计算患者的心电图异常率;超声心动图检查患者左心室射血分数(LVEF)。1.5.2 心肌酶谱检测 所有患者于化疗前、化疗3 个周期及6 个周期空腹采集静脉血, 置于干燥的试管中,离心后, 使用全自动生化分析仪进行心肌酶谱检测,包括肌酸激酶(CK)、肌酸激酶同工酶(CK-MB)和乳酸脱氢酶(LDH)。
采用SPSS 19.0 统计学软件进行统计学分析,计量资料采用均数±标准差()表示,组间比较采用t 检验, 计数资料采用百分率表示, 组间比较采用χ2检验。 以P <0.05 为差异有统计学意义。
两组患者化疗后心电图异常率均较化疗前显著上升,差异均有统计学意义(均P <0.05)。EPI 组化疗3、6 个周期心电图异常率均明显高于GSH+EPI 组,差异均有统计学意义(均P <0.05)。 见表2。
表2 两组心电图异常率比较[n(%)]
两组患者化疗后超声心动图所测LVEF 均较化疗前明显降低,cTnT 均较化疗前明显升高,差异均有统计学意义(均P <0.05)。与EPI 组比较,GSH+EPI组化疗3、6 个周期LVEF 较高,cTnT 水平较低, 差异有统计学意义(P <0.05)。 见表3。
两组患者化疗后心肌酶谱水平均较化疗前显著下降,差异均有统计学意义(均P <0.05)。 与EPI 组比较,GSH+EPI 组化疗3、6 个周期心肌酶谱水平均较高,差异均有统计学意义(均P <0.05)。 见表4。
随着人们生活方式的转变和环境因素的影响,心血管疾病和恶性肿瘤已经成为影响人类健康的两大杀手,蒽环类药物是一类对肿瘤具有确切疗效的抗癌药物,其代表药物为EPI,在治疗多种恶性肿瘤方面占有突出的地位。但因为EPI 在体内的累积性心脏毒性使EPI 在临床应用上受到了限制,并且危害着广大患者的生存质量。 EPI 诱发心脏毒性的机制至今尚不明确。目前的研究所提出的假说包括自由基损伤学说[11]、铁代谢失衡学说[12]、钙超载学说[13]、前列腺素假说[14]等。这些因素相互影响,最终导致心脏毒性的发生。本实验结果表明:GSH 能够改善化疗患者的心电图异常率、LVEF 及cTnT 水平, 减缓其心肌酶谱水平的下降,抑制化疗患者心脏损坏的发生和发展。
表3 两组LVEF 及cTnT 水平比较()
表3 两组LVEF 及cTnT 水平比较()
注:与本组化疗前比较,*P <0.05;LVEF:左心室射血分数;cTnT:心肌肌钙蛋白;EPI:表阿霉素;GSH:还原型谷胱甘肽
组别 例数LVEF(%)化疗前 化疗3 个周期 化疗6 个周期cTnT(ng/mL)化疗前 化疗3 个周期 化疗6 个周期EPI 组GSH+EPI 组t 值P 值30 30 64.76±12.64 65.17±8.36 1.457>0.05 59.65±11.58*61.87±21.75*3.948<0.05 55.09±7.38*59.45±9.56*3.963<0.05 0.26±0.07 0.24±0.11 1.591>0.05 1.16±0.94*0.87±0.27*4.159<0.05 2.21±0.69*1.43±0.54*4.739<0.05
表4 两组心肌酶谱水平比较(U/L,)
表4 两组心肌酶谱水平比较(U/L,)
注: 与本组化疗前比较,#P <0.05; 与EPI 组比较,*P <0.05,**P <0.01;CK:肌酸激酶;CK-MB:肌酸激酶同工酶;LDH:乳酸脱氢酶;EPI:表阿霉素;GSH:还原型谷胱甘肽
组别 CK CK-MB LDH EPI 组(n = 30)化疗前化疗3 个周期化疗6 个周期GSH+EPI 组(n = 30)化疗前化疗3 个周期化疗6 个周期103.63±31.42 80.45±24.64#63.16±19.43#14.54±2.47 10.18±2.64#7.48±2.53#462.53±143.64 346.36±94.37#285.47±48.37#103.58±37.27 83.37±28.46#*69.36±23.53#**13.37±4.01 11.73±2.27#*9.46±2.64#**467.48±198.57 358.62±83.48#*301.65±101.56#**
蒽环类药物是治疗乳腺癌最常用的化疗药物之一。自20 世纪中叶,人们开始关注蒽环类药物的心脏毒性,特别是剂量的累积性心脏毒性[15]。 其机制是蒽环类药物可以通过与相关的DNA 之间的相互作用和由自由基介导的相关DNA 损伤, 进而抑制拓扑酶杀伤肿瘤细胞[16]。 但这一过程也能够通过氧化和破坏内源性的铁代谢,产生心肌损害作用,促使心肌细胞产生凋亡,严重的会出现心力衰竭甚至死亡[17]。 尤其女性患者对这一过程更为敏感,严重影响了患者的化疗效果,严重者还会出现扩张型心肌病甚至心力衰竭[18],直接威胁患者生命。心脏毒性早期会出现心悸、胸闷、气短等症状,心电图表现为心律及ST-T 段的异常等[19],结合超声心动图和肌钙蛋白水平的检测也能够对患者的心脏损害程度进行评估。在超声心动图的各项参数中,LVEF 能最好地代表心肌的功能[20]。肌钙蛋白中cTnT 也具有较好的代表性。 本实验结果表明,EPI 组和GSH+EPI 组患者经化疗后超声心动图所测LVEF均有所降低,cTnT 水平升高,与化疗前比较差异有统计学意义。 EPI 组LVEF 降低幅度及cTnT 水平升高幅度明显大于GSH+EPI 组患者,表明经GSH 的干预后能够明显改善上述指标,表明对于心肌具有较好的保护作用, 同时心电图的检测结果也显示,EPI 组心电图异常率升高幅度明显高于GSH+EPI 组, 提示了GSH 对于心脏毒性具有明显的抑制作用。
综上所述,GSH 能够改善化疗患者的心电图异常率、LVEF 及cTnT 水平,减缓其心肌酶谱水平的下降,对临床有指导意义,值得推广。
[1] Lawrence RA,Burk RF. Glutathione peroxidase activity in selenium-deficient rat liver[J].Biochem Biophysi Res Commun,2012,425(3):503-509.
[2] Foyer CH,Noctor G. Ascorbate and glutathione:the heart of the redox hub [J]. Plant Physiol,2011,155(1):2-18.
[3] Brigelius-Flohé R,Maiorino M.Glutathione peroxidases[J].Biochim Biophys Acta,2013,1830(5):3289-3303.
[4] Noctor G,Mhamdi A,Chaouch S,et al.Glutathione in plants:an integrated overview[J].Plant Cell Environ,2012,35(2):454-484.
[5] Cheng R,Feng F,Meng F,et al.Glutathione-responsive nanovehicles as a promising platform for targeted intracellular drug and gene delivery[J].J Control Release,2011,152(1):2-12.
[6] Rodríguez-Ramiro I,Ramos S,Bravo L,et al. Procyanidin B2 induces Nrf2 translocation and glutathione S-transferase P1 expression via ERKs and p38-MAPK pathways and protect human colonic cells against oxidative stress [J].Eur J Nutr,2012,51(7):881-892.
[7] Niu LY,Guan YS,Chen YZ,et al.BODIPY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine[J].J Am Chem Soc,2012,134(46):18928-18931.
[8] Rouschop KM,Dubois LJ,Keulers TG,et al. PERK/eIF2 signaling protects therapy resistant hypoxic cells through induction of glutathione synthesis and protection against ROS [J]. Proc Natl Acad Sci USA,2013,110(12):4622-4627.
[9] Nasir Baig RB,Varma RS.A highly active magnetically recoverable nano ferrite-glutathione-copper(nano-FGT-Cu)catalyst for Huisgen 1,3-dipolar cycloadditions [J]. Green Chem,2012,14(3):625-632.
[10] MaríM,MoralesA,ColellA,etal.Mitochondrial glutathione:features,regulation and role in disease [J]. Biochim Biophys Acta,2013,1830(5):3317-3328.
[11] Han Y,Chaouch S,Mhamdi A,et al. Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H2O2to activation of salicylic acid accumulation and signaling [J]. Antioxidant Redox Signaling,2013,18(16):2106-2121.
[12] Piao MJ,Kang KA,Lee IK,et al. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis [J]. Toxicol Lett,2011,201(1):92-100.
[13] Franco R,Bortner CD,Schmitz I,et al. Glutathione depletion regulates both extrinsic and intrinsic apoptotic signaling cascades independent from multidrug resistance protein 1 [J]. Apoptosis,2014,19(1):117-134.
[14] Waddell T,Chau I,Cunningham D,et al.Epirubicin,oxaliplatin,and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3):a randomised,open-label phase 3 trial [J]. Lancet Oncol,2013,14(6):481-489.
[15] Oddens JR,Sylvester RJ,Brausi MA,et al. The effect of age on the efficacy of maintenance bacillus calmetteguérin relative to maintenance epirubicin in patients with stage Ta T1 urothelial bladder cancer:results from EORTC Genito-Urinary Group Study 30911 [J]. Eur Urol,2014,66(4):694-701.
[16] Monteiro LJ,Khongkow P,Kongsema M,et al. The Forkhead Box M1 protein regulates BRIP1 expression and DNA damage repair in epirubicin treatment[J].Oncogene,2013,32(39):4634-4645.
[17] Nagata K,Egashira N,Yamada T,et al. Change of formulation decreases venous irritation in breast cancer patients receiving epirubicin [J]. Supportive Care Cancer,2012,20(5):951-955.
[18] Lück HJ,Du Bois A,Loibl S,et al. Capecitabine plus paclitaxel versus epirubicin plus paclitaxel as first-line treatment for metastatic breast cancer:efficacy and safety results of a randomized,phase Ⅲtrial by the AGO Breast Cancer Study Group [J]. Breast Cancer Res Treat,2013,139(3):779-787.
[19] Untch M,Fasching PA,Konecny GE,et al. PREPARE trial:a randomized phase Ⅲtrial comparing preoperative,dose-dense,dose-intensified chemotherapy with epirubicin,paclitaxel and CMF versus a standard-dosed epirubicin/cyclophosphamide followed by paclitaxel±darbepoetin alfa in primary breast cancer-results at the time of surgery [J]. Ann Oncol,2011,22(9):1988-1998.
[20] Chittaranjan S,Bortnik S,Dragowska WH,et al.Autophagy inhibition augments the anticancer effects of epirubicin treatment in anthracycline-sensitive and-resistant triplenegative breast cancer[J].Clin Cancer Res,2014,20(12):3159-3173.