王雁君, 苗向阳
(山西师范大学物理与信息工程学院, 临汾 041004)
初始振动态对氢分子离子电离通道的影响
王雁君, 苗向阳
(山西师范大学物理与信息工程学院, 临汾 041004)
库仑爆炸核初始动能释放谱; 非Born-Oppenheimer近似; 直接多光子电离; 电荷共振增强电离
强激光场中氢分子离子的电离解离动力学引起了理论和实验工作者的广泛关注和深入研究,其中的一些物理机制可以通过模拟分析库仑爆炸核动能释放谱得到清晰地解释,例如键的软化[1]、键的硬化[2]、阈上解离[3]、电荷共振增强电离[4]等.特别的,在特殊核间距下发生的电荷共振增强电离引起了研究工作者的兴趣[5,6].在以上现象的过程中,核所能具有的动能范围往往是0 eV到10 eV[7,8].Niikura等人在核动能释放谱中观察到了更高能量的峰值结构[9].为了解释这种现象,Staudte等人[10]提出了直接多光子电离是有效合理的物理机制,当氢分子离子和强激光场相互作用时,其电离通道主要有两个:直接多光子电离和电荷共振增强电离.
(1)
其中体系的哈密顿量可以表示为:
VC(R,z)+κzE(t)
(2)
其中,mp是核的质量,R为核间距,z为电子相对于核质心的位置,VC为软核库仑势,可描述为:
(3)
E(t)=E0f(t)cosωt
(4)
程序中初始波函数是通过对角化在分离格点表象(DVR)中构建的矩阵中得到的,波函数随时间的演化采用标准的二阶劈裂算符的方法[13]:
ψ(R,z;t+δt)=e-iTδt/2e-iVδte-iTδt/2
ψ(R,z;t)+O(δt3)
(5)
T为核与电子的动能算符,V表示体系所有的势能.为了节约时间,我们可以将核与电子分开传播:
(6)
图1 处于不同初始核振动态(v=0到v=7)时的核初始动能释放谱.激光参数为:I= 6.8×1013W/cm2,波长λ=800 nm,半宽τ=80 fsFig.1 . The peak intensity of the laser pulse is 6.8 × 1013 W/cm2, FWHM is 80 fs, wavelength is 800 nm
图处于不同核初始振动态下(v=0到v=7)的电离速率随核间距R变化的分布图Fig., respectively
[1] Bucksbaum P H, Zavriyev A, Muller H G,etal. Softening of the H+2molecular bond in intense laser fields [J].Phys.Rev.Lett., 1990, 64: 1883.
[2] Fransinski L J, Posthumus J H, Plumridge J,etal. Manipulation of bond hardening in H+2by chirping of intense pemtosecond laser pulses [J].Phys.Rev.Lett., 1999, 83: 3625.
[3] Jolicard G, Atabek O. Above-threshold-dissociation dynamics of H+2with short intense laser pulses [J].Phys.Rev. A, 1992, 46: 5845.
[4] Bandrauk A D, Zuo T. Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers [J].Phys.Rev. A, 1995, 52: R2511.
[5] Lu R F, Xiao C Y, Deng K M,etal. Coherent superposition in the coulomb explosion spectra of H+2[J].Chem.Phys., 2011, 382: 88.
[6] Shi H T, Miao X Y. Theoretical exploration of the isotopic effect on nuclear dynamics in Coulomb explosion [J].Chin.Phys.Lett., 2013, 30: 063101.
[8] Chelkowski S, Zuo T, Atabek O,etal. Dissociation, ionization, and Coulomb explosion of H+2in a intense laser field by numerical integration of the time-dependent Schrödinger equation [J].Phys.Rev. A, 1995, 52: 2977.
[9] Niikura H, Légaré F, Hashani R. Sub-laser-cycle electron pulses for probing molecular dynamic [J].Nature, 2002, 417: 917.
[10] Staudte A, Cocke C L, Prior M H,etal. Observation of a nearly isotropic, high-energy Coulomb explosion group in the fragmentation of D2by short laser pulses [J].Phys.Rev. A, 2002, 65: 020703.
[11] Vafaee M. Nuclear kinetic energy spectra of D+2in an intense laser field: Beyond the Born-Oppenheimer approximation [J].Phys.Rev. A, 2008, 78: 023410.
[12] Lu R F, Zhang P Y, Han K L. Attosecond-resolution quantum dynamics calculations for atoms and molecules in strong laser fields [J].Phys.Rev. E, 2008, 77: 066701.
[13] Sharafeddin O, Zhang John Z H. A DVR based time-dependent wave packet treatment for reactive scattering [J].Chem.Phys.Lett., 1993, 204: 190.
[14] Feuerstein B, Thumm J. On the computation of momentum distributions within wavepacket propagation calculations [J].J.Phys. B, 2003, 36: 707.
[15] Zhang C P, Miao X Y. Theoretical investigation of ionization process for H+2for in chirped laser field [J].J.At.Mol.Phys., 2014, 31(2): 274 (in Chinese) [张彩萍, 苗向阳. 啁啾激光场中氢分子离子电离过程的理论研究[J]. 原子与分子物理学报, 2014, 31(2): 274]
[16] He H X, Lu R F, Zhang P Y,etal. Direct multi-photon ionizations of H+2in intense laser fields [J].J.Phys. B:At.Mol.Opt.Phys., 2012, 45 (8): 085103.
The influence of initial vibrational states on ionization channels of the hydrogen molecular ion
WANG Yan-Jun, MIAO Xiang-Yang
(College of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China)
The Coulomb explosion nuclear initial kinetic-energy-release spectra; Non Born-Oppenheimer approximation; Direct multi-photon ionization; Charge-resonance-enhanced ionization
2014-07-11
国家自然科学基金青年基金项目(11404204);教育部科技研究重点项目(211025);教育部高等学校博士学科点专项科研基金(新教师类)(20111404120004);山西省青年科技研究基金(2009021005)
王雁君(1991—), 女,山西广灵人,硕士,主要从事强激光与原子分子相互作用的研究.
苗向阳.E-mail: sxxymiao@126.com
103969/j.issn.1000-0364.2015.10.002
O561.4
A
1000-0364(2015)05-0723-05