郑 佳 俞清翔 王 莉 王邦茂
天津医科大学总医院消化内科(300052)
胃肠道间质瘤伊马替尼继发耐药治疗的研究进展*
郑佳#俞清翔王莉王邦茂&
天津医科大学总医院消化内科(300052)
Drug Therapy, Combination
胃肠道间质瘤(gastrointestinal stromal tumors, GISTs)是最常见的胃肠道间叶源性肿瘤,研究发现KIT或血小板源性生长因子受体α(PDGFRA)基因功能获得性突变致酪氨酸激酶异常激活是GISTs发病的关键因素,针对突变基因的靶向治疗药物如酪氨酸激酶抑制剂(TKIs)伊马替尼(imatinib)已成功应用于临床,在GISTs的治疗中取得令人瞩目的疗效。然而,随着治疗时间的延长,患者可对伊马替尼产生继发耐药,从而极大影响治疗效果,成为亟待解决的临床难题。本文就GISTs伊马替尼继发耐药治疗的研究进展作一综述。
GISTs对伊马替尼耐药分为原发耐药和继发耐药,前者指应用伊马替尼治疗无效,包括治疗开始后疾病进展(PD)或疾病稳定(SD)<6个月;后者指在初始治疗有效或获得SD 6个月后发生PD[1]。以下为GISTs对伊马替尼继发耐药的可能机制。
1. KIT/PDGFRA基因二次突变:多数研究认为GISTs对伊马替尼继发耐药与KIT/PDGFRA基因酪氨酸激酶结构域二次突变密切相关[1-3]。一项meta分析显示,与伊马替尼继发耐药相关的KIT二次突变最常发生于外显子17(54.5%),其次为外显子13(38.3%)和14(13.4%)[2]。Gao等[3]的研究显示,伊马替尼治疗前KIT原发突变均发生于外显子11或9,而治疗后二次突变发生于外显子17、13、18、14。
2. PTEN基因丢失:抑癌基因PTEN表达下调或丢失可致AKT过度活化而抵抗肿瘤细胞凋亡,进而对TKIs产生耐药[4]。伊马替尼耐药GIST细胞中的PTEN丢失主要为杂合子丢失[5-7]。Quattrone等[5]比较了伊马替尼初治与继发耐药GIST患者的PTEN状态,发现前者PTEN丢失率显著低于后者(9%对39%),约50%的继发耐药者PTEN蛋白低表达;体外实验显示,以siRNA沉默GIST细胞的PTEN基因可上调PI3K/AKT/mTOR和MAPK信号通路活性。
3. 触发GIST细胞进入静止期:伊马替尼治疗时,有相当一部分GIST细胞并未发生凋亡,而是进入静止期,这些细胞虽已退出细胞分裂周期,但仍存活并具有代谢活性,可在逃逸伊马替尼诱导的细胞凋亡后重新进入细胞分裂周期,成为耐药克隆的源头,最终导致GISTs难治或复发[8]。有研究[9]发现伊马替尼可通过调节APC/CDH1-SKP2-p27Kip1信号轴上调细胞周期蛋白依赖性激酶抑制剂p27Kip1,引起细胞周期蛋白A(cyclin A)表达下调,使GIST细胞退出S期而进入静止期。此外,Gupta等[10]发现伊马替尼还可通过诱导自噬作用促使GIST细胞进入静止期。
1. 新型TKIs:GISTs继发耐药突变具有异质性,特定位点突变抑制剂不能拮抗广谱突变,多靶点TKIs成为当前研究的热点。氟马替尼(flumatinib)是一种选择性BCR-ABL/PDGFR/KIT抑制剂,可锚定于KIT的酪氨酸激酶结构域,克服 活化环突变如D820G、N822K、Y823D、A829P等引起的GISTs耐药,体内实验显示其对Y823D二次突变所致继发耐药细胞的抑制作用优于伊马替尼和舒尼替尼(sunitinib)[11]。瑞格非尼(regorafenib)对干细胞因子受体、PDGFR、成纤维细胞生长因子受体(FGFR)、血管内皮生长因子受体(VEGFR)等均有抑制作用。相关Ⅲ期临床试验显示,对于伊马替尼、舒尼替尼继发耐药的进展期GIST患者(转移性或不可切除),瑞格非尼160 mg/d治疗的中位无进展生存期(PFS)显著优于安慰剂(4.8对0.9个月,HR: 0.27, 95% CI: 0.19~0.39,P<0.000 1)[12]。帕唑帕尼(pazopanib)可抑制KIT、VEGFR-1、-2、-3和PDGFR-α、-β。一项Ⅱ期临床试验中,以帕唑帕尼800 mg/d治疗25例伊马替尼、舒尼替尼继发耐药的进展期GIST患者,24周无进展率[完全应答(CR)+部分应答(PR)+SD比率]仅为17%(95% CI: 4.5~37),除1例患者外,其余均因PD或不能耐受而退出治疗,中位PFS为1.9个月(95% CI: 1.6~5.2),中位总生存期(OS)为10.7个月(95% CI: 3.9~NR)。上述结果表明,帕唑帕尼对伊马替尼、舒尼替尼耐药的进展期GISTs疗效不明显[13]。
2. 伊马替尼联合下游通路靶向抑制剂:KIT/PDGFRA下游信号分子PI3K、AKT、mTOR等与GISTs对TKIs继发耐药密切相关,伊马替尼与下游通路靶向抑制剂联合应用成为相关治疗研究的新理念[14]。
①联合mTOR抑制剂:GIST细胞裸鼠移植瘤模型研究[15]显示,mTOR抑制剂依维莫司单用或与伊马替尼联用,对移植瘤生长的抑制作用优于单用伊马替尼(肿瘤体积<0.5 cm3对>0.5 cm3),并能显著抑制肿瘤代谢,联合用药效果更佳。一项Ⅰ-Ⅱ期临床试验评估了依维莫司联合伊马替尼对伊马替尼耐药GISTs的疗效和安全性,Ⅱ期试验将患者分为仅伊马替尼耐药组和伊马替尼以及其他TKIs耐药组,予依维莫司2.5 mg/d+伊马替尼600 mg/d治疗,结果显示两组4个月时PFS率分别为17%和37%,中位PFS分别为1.9和3.5个月,中位OS分别为14.9和10.7个月,前一组SD和PD分别为36%和54%,后一组PR、SD和PD分别为2%、43%和32%,患者对联合用药耐受性良好[16]。
②联合PI3K抑制剂:Floris等[7]以携带KIT不同位点突变的6种人GIST裸鼠移植瘤模型评价PI3K抑制剂GDC-0941与伊马替尼联用的抗肿瘤效应,发现联合组肿瘤负荷较初始值下降64%,效果显著优于两者单用,肿瘤细胞增殖几乎完全被抑制,细胞凋亡增加;在其中3个移植瘤模型中,联合组停止给药后肿瘤消退仍可维持,单用伊马替尼则未见此效应。上述结果表明单独给药只能部分抑制PI3K/AKT/mTOR信号通路,联合用药则可使之完全受抑。
③联合PI3K/mTOR双重抑制剂:体外实验显示,PI3K/mTOR双重抑制剂NVP-BEZ235与伊马替尼联用作用于GIST细胞,可发挥协同抗增殖作用;对于PTEN基因沉默或双等位基因丢失的GIST细胞,NVP-BEZ235可部分降低AKT及其下游S6蛋白磷酸化水平,提示其对于此种GIST细胞的治疗具有优势[6]。Van Looy等[17]通过伊马替尼耐药GIST细胞裸鼠移植瘤模型发现,单独给予NVP-BEZ235只能稳定肿瘤生长,与伊马替尼联用才能完全抑制PI3K信号通路,使肿瘤显著消退。
3. 较少依赖KIT/PDGFRA途径的靶向抑制剂:KIT/PDGFRA及其下游信号分子已作为GISTs的治疗靶点广泛应用于新药研究,但迄今仍无某种药物对所有类型的GISTs均有效。近年来,较少依赖KIT/PDGFRA途径的靶向抑制剂日益受到关注。
①热休克蛋白(HSP)抑制剂:HSP90作为分子伴侣可对细胞内众多信号蛋白如KIT、PDGFRA的构象成熟和功能稳定进行调控,以防止其泛素化和降解,成为新兴的抗GISTs药物潜在作用靶点。Smyth等[18]的研究发现,HSP90抑制剂AT13387在伊马替尼敏感和耐药GIST细胞中均可耗竭KIT、AKT及其磷酸化形式p-KIT、p-AKT,从而抑制KIT信号通路,其抗GISTs活性在体内外实验中得到验证;AT13387与伊马替尼联用对伊马替尼耐药GISTs的抑制作用优于两者单用。另有研究[19]显示,除蛋白酶体依赖性降解途径外,自噬作用亦部分参与了抑制HSP90诱导的KIT降解。
一项关于HSP90抑制剂BIIB021治疗GISTs的 Ⅱ 期临床试 验中,23例伊马替尼、舒尼替尼耐药患者接受BIIB021 600 mg 2次/周或400 mg 3次/周治疗,22%的患者获得代谢PR(mPR),持续时间为25~138 d,未见明显不良反应[20]。37例进展期GIST患者接受高效选择性HSP90抑制剂IPI-504 90~500 mg/m22次/周×2周、间隔1周治疗,SD为70%,mPR为38%,仅1例患者获得PR,患者耐受性良好[21]。
②极光激酶(aurora kinase)抑制剂:极光激酶在有丝分裂中起关键作用,与p53、p21、Chfr等抑癌基因共同参与肿瘤发生。研究[22-23]证实极光激酶A高表达是GISTs预后不良[低无复发生存期(RFS)、PFS和OS]的独立危险因素。Yeh等[23]发现极光激酶A抑制剂MLN8237对伊马替尼耐药和敏感GIST细胞均有生长抑制作用,其机制涉及上调p21和p53、诱导细胞周期G2/M期阻滞和诱导细胞衰老、凋亡,如与伊马替尼联用,可协同发挥细胞毒作用。
③组蛋白去乙酰化酶抑制剂(HDACI):组蛋白去乙酰化酶是维持染色体的基本组成单位核小体中组蛋白乙酰化平衡的关键酶之一。伊马替尼对GIST细胞的促凋亡作用部分是由上调可溶性组蛋白H2AX致染色质异常积聚和转录阻滞所介导[24],提示抑制H2AX去乙酰化可能与伊马替尼产生协同作用。携带KIT不同位点突变人GIST细胞或组织裸鼠移植瘤模型研究[25]显示,与对照组相比,HDACI帕比司他能使肿瘤缩小25%,组织学检查可见坏死、出血、纤维化、黏液样变性等改变,细胞凋亡显著,分裂活性降低,如与伊马替尼联用,上述效应更为突出。Mühlenberg等[26]报道HDACI仅对KIT阳性GIST细胞有增殖抑制作用,表明KIT为其作用靶点,其机制包括下调KIT mRNA转录、导致HSP90乙酰化而干扰其KIT伴侣活性。一项 Ⅰ 期临床试验纳入12例伊马替尼继发耐药转移性GIST患者,伊马替尼400 mg/d治疗1周后开始加用帕比司他,1例患者获得mPR,7例为mSD,3例为PD[27]。
4. 诱导静止期GIST细胞凋亡:DREAM复合体在伊马替尼诱导GIST细胞进入静止期中起关键作用,通过敲除DREAM复合体的各组成亚基或以药物抑制DREAM调节激酶DYRK1A或其靶分子LIN52以干扰DREAM复合体形成,可增强伊马替尼的抗GISTs活性,促进肿瘤细胞凋亡[28-29]。鉴于伊马替尼可通过诱导自噬作用促使GIST细胞进入静止期,抑制自噬亦可能有助于GISTs的治疗。体内外实验均显示以siRNA沉默自噬相关基因可显著下调自噬体表达,抑制GIST细胞进入静止期,阻止继发耐药发生,增强伊马替尼的细胞毒作用[10]。
5. 其他:Edris等[30]发现,在伊马替尼耐药和敏感人GIST细胞及其移植瘤模型中,抗KIT单克隆抗体SR1均可抑制肿瘤细胞生长,其机制除下调KIT表达外,尚涉及增强免疫细胞的肿瘤清除能力。有研究[31]探讨了不同TKIs对KIT活化环二次突变GIST细胞的作用,结果显示舒尼替尼对外显子13、14二次突变细胞的抑制作用强于外显子17二次突变细胞;而尼罗替尼(nilotinib)和索拉非尼(sorafenib)与伊马替尼、舒尼替尼和达沙替尼(dasatinib)相比,能显著抑制外显子17二次突变细胞的KIT磷酸化。上述发现提示,对于伊马替尼继发耐药GIST患者,检测基因突变状态以选择合适的TKIs可能有助于GISTs的治疗。
GISTs耐药机制的逐渐阐明为其治疗提供了重要依据。尽管分子靶向药物如各种新型TKIs、KIT分子伴侣抑制剂、极光激酶抑制剂、HDACI以及联合应用下游信号分子抑制剂、诱导静止期GIST细胞凋亡等方面的研究已取得一定进展,但其用于治疗伊马替尼继发耐药的有效性和安全性尚需进一步评估以及更多设计良好的临床试验加以验证。鉴于KIT/PDGFRA基因突变的异质性,突变位点的检测有助于选择针对性的治疗药物。根据基因型裁剪的治疗方案是实现GISTs个体化治疗的新挑战,只有实现以分子机制为基础的个体化治疗,才可能实现GISTs的长期缓解和最终治愈。
参考文献
1 Wang CM, Huang K, Zhou Y, et al. Molecular mechanisms of secondary imatinib resistance in patients with gastrointestinal stromal tumors[J]. J Cancer Res Clin Oncol, 2010, 136 (7): 1065-1071.
2 Lee JH, Kim Y, Choi JW, et al. Correlation of imatinib resistance with the mutational status of KIT and PDGFRA genes in gastrointestinal stromal tumors: a meta-analysis[J]. J Gastrointestin Liver Dis, 2013, 22 (4): 413-418.
3 Gao J, Tian Y, Li J, et al. Secondary mutations of c-KIT contribute to acquired resistance to imatinib and decrease efficacy of sunitinib in Chinese patients with gastrointestinal stromal tumors[J]. Med Oncol, 2013, 30 (2): 522.
4 Cassinelli G, Zuco V, Gatti L, et al. Targeting the Akt kinase to modulate survival, invasiveness and drug resistance of cancer cells[J]. Curr Med Chem, 2013, 20 (15): 1923-1945.
5 Quattrone A, Wozniak A, Dewaele B, et al. Frequent mono-allelic loss associated with deficient PTEN expression in imatinib-resistant gastrointestinal stromal tumors[J]. Mod Pathol, 2014, 27 (11): 1510-1520.
6 Quattrone A, Wozniak A, Dewaele B, et al. PTEN inactivation in gastrointestinal stromal tumors (GIST): Possible relevance for treatment of imatinib-resistant disease[C]//Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2011 Nov 12-16; San Francisco, CA. Mol Cancer Ther, 2011, 10 (11 Suppl): A166.
7 Floris G, Wozniak A, Sciot R, et al. A potent combination of the novel PI3K inhibitor, GDC-0941, with imatinib in gastrointestinal stromal tumor xenografts: long-lasting responses after treatment withdrawal[J]. Clin Cancer Res, 2013, 19 (3): 620-630.
8 Duensing S, Duensing A. Targeted therapies of gastrointestinal stromal tumors (GIST) -- the next frontiers[J]. Biochem Pharmacol, 2010, 80 (5): 575-583.
9 Liu Y, Perdreau SA, Chatterjee P, et al. Imatinib mesylate induces quiescence in gastrointestinal stromal tumor cells through the CDH1-SKP2-p27Kip1 signaling axis[J]. Cancer Res, 2008, 68 (21): 9015-9023.
10Gupta A, Roy S, Lazar AJ, et al. Autophagy inhibition and antimalarials promote cell death in gastrointestinal stromal tumor (GIST)[J]. Proc Natl Acad Sci U S A, 2010, 107 (32): 14333-14338.
11Zhao J, Quan H, Xu Y, et al. Flumatinib, a selective inhibitor of BCR-ABL/PDGFR/KIT, effectively overcomes drug resistance of certain KIT mutants[J]. Cancer Sci, 2014, 105 (1): 117-125.
12Demetri GD, Reichardt P, Kang YK, et al; GRID study investigators. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial[J]. Lancet, 2013, 381 (9863): 295-302.
13Ganjoo KN, Villalobos VM, Kamaya A, et al. A multicenter phase Ⅱ study of pazopanib in patients with advanced gastrointestinal stromal tumors (GIST) following failure of at least imatinib and sunitinib[J]. Ann Oncol, 2014, 25 (1): 236-240.
14Pantaleo MA, Nannini M, Di Battista M, et al. Combined treatment strategies in gastrointestinal stromal tumors (GISTs) after imatinib and sunitinib therapy[J]. Cancer Treat Rev, 2010, 36 (1): 63-68.
15Pantaleo MA, Nicoletti G, Nanni C, et al. Preclinical evaluation of KIT/PDGFRA and mTOR inhibitors in gastrointestinal stromal tumors using small animal FDG PET[J]. J Exp Clin Cancer Res, 2010, 29: 173.
16Schöffski P, Reichardt P, Blay JY, et al. A phase Ⅰ-Ⅱ study of everolimus (RAD001) in combination with imatinib in patients with imatinib-resistant gastrointestinal stromal tumors[J]. Ann Oncol, 2010, 21 (10): 1990-1998.
17Van Looy T, Wozniak A, Sciot R, et al. The Efficacy of phosphoinositol 3 kinase (PI3K) inhibitor gastrointestinal stromal tumor (GIST) models[J]. J Clin Oncol, 2012, 30: 10030.
18Smyth T, Van Looy T, Curry JE, et al. The HSP90 inhibitor, AT13387, is effective against imatinib-sensitive and -resistant gastrointestinal stromal tumor models[J]. Mol Cancer Ther, 2012, 11 (8): 1799-1808.
19Hsueh YS, Yen CC, Shih NY, et al. Autophagy is involved in endogenous and NVP-AUY922-induced KIT degradation in gastrointestinal stromal tumors[J]. Autophagy, 2013, 9 (2): 220-233.
20Dickson MA, Okuno SH, Keohan ML, et al. Phase Ⅱ study of the HSP90-inhibitor BIIB021 in gastrointestinal stromal tumors[J]. Ann Oncol, 2013, 24 (1): 252-257.
21Wagner AJ, Chugh R, Rosen LS, et al. A phase Ⅰ study of the HSP90 inhibitor retaspimycin hydrochloride (IPI-504) in patients with gastrointestinal stromal tumors or soft-tissue sarcomas[J]. Clin Cancer Res, 2013, 19 (21): 6020-6029.
22Yen CC, Yeh CN, Cheng CT, et al. Integrating bioinformatics and clinicopathological research of gastrointestinal stromal tumors: identification of aurora kinase A as a poor risk marker[J]. Ann Surg Oncol, 2012, 19 (11): 3491-3499.
23Yeh CN, Yen CC, Chen YY, et al. Identification of aurora kinase A as an unfavorable prognostic factor and potential treatment target for metastatic gastrointestinal stromal tumors[J]. Oncotarget, 2014, 5 (12): 4071-4086.
24Liu Y, Tseng M, Perdreau SA, et al. Histone H2AX is a mediator of gastrointestinal stromal tumor cell apoptosis following treatment with imatinib mesylate[J]. Cancer Res, 2007, 67 (6): 2685-2692.
25Floris G, Debiec-Rychter M, Sciot R, et al. High efficacy of panobinostat towards human gastrointestinal stromal tumors in a xenograft mouse model[J]. Clin Cancer Res, 2009, 15 (12): 4066-4076.
26Mühlenberg T, Zhang Y, Wagner AJ, et al. Inhibitors of deacetylases suppress oncogenic KIT signaling, acetylate HSP90, and induce apoptosis in gastrointestinal stromal tumors[J]. Cancer Res, 2009, 69 (17): 6941-6950.
27Bauer S, Hilger RA, Mühlenberg T, et al. Phase Ⅰ study of panobinostat and imatinib in patients with treatment-refractory metastatic gastrointestinal stromal tumors[J]. Br J Cancer, 2014, 110 (5): 1155-1162.
28Boichuk S, Parry JA, Makielski KR, et al. The DREAM complex mediates GIST cell quiescence and is a novel therapeutic target to enhance imatinib-induced apoptosis[J]. Cancer Res, 2013, 73 (16): 5120-5129.
29DeCaprio JA, Duensing A. The DREAM complex in antitumor activity of imatinib mesylate in gastrointestinal stromal tumors[J]. Curr Opin Oncol, 2014, 26 (4): 415-421.
30Edris B, Willingham SB, Weiskopf K, et al. Anti-KIT monoclonal antibody inhibits imatinib-resistant gastro-intestinal stromal tumor growth[J]. Proc Natl Acad Sci U S A, 2013, 110 (9): 3501-3506.
31Hsueh YS, Lin CL, Chiang NJ, et al. Selecting tyrosine kinase inhibitors for gastrointestinal stromal tumor with secondary KIT activation-loop domain mutations[J]. PLoS One, 2013, 8 (6): e65762.
(2014-10-31收稿;2014-12-28修回)
摘要酪氨酸激酶抑制剂伊马替尼在胃肠道间质瘤(GISTs)的治疗中已取得令人瞩目的疗效,然而伊马替尼继发耐药的出现成为亟待解决的临床难题。GISTs对伊马替尼继发耐药的可能机制包括KIT/PDGFRA基因二次突变、PTEN基因丢失、触发GIST细胞进入静止期等。针对上述耐药机制,目前已提出新型酪氨酸激酶抑制剂、联合应用下游通路靶向抑制剂、较少依赖KIT/PDGFRA途径的靶向抑制剂(KIT分子伴侣抑制剂、极光激酶抑制剂等)、诱导静止期GIST细胞凋亡等解决伊马替尼继发耐药的策略,本文就相关研究进展作一综述。
关键词胃肠道间质瘤;伊马替尼;继发耐药;分子靶向治疗;药物疗法,联合
Advances in Management of Gastrointestinal Stromal Tumors with Secondary Resistance to ImatinibZHENGJia,YUQingxiang,WANGLi,WANGBangmao.DepartmentofGastroenterologyandHepatology,TianjinGeneralHospital,TianjinMedicalUniversity,Tianjin(300052)
Correspondence to: WANG Bangmao, Email: gi.tmuh@sohu.com
AbstractThe use of tyrosine kinase inhibitor imatinib in treatment of gastrointestinal stromal tumors (GISTs) has achieved a dramatic therapeutic efficacy. However, secondary imatinib resistance emerged as a clinical problem needs to be solved urgently. The underlying mechanisms of GISTs secondary resistance to imatinib may be related with secondary mutations of KIT/PDGFRA genes, loss of PTEN gene and induction of cellular quiescence. This resulted in the adoption of new therapeutic strategies such as novel tyrosine kinase inhibitors, combined use of imatinib with downstream signaling inhibitors, KIT/PDGFRA independent targeted inhibitors such as KIT chaperone inhibitors and aurora kinase inhibitors, as well as inducing apoptosis in quiescent GIST cells. In this article, the above-mentioned issues were summarized.
Key wordsGastrointestinal Stromal Tumors;Imatinib;Secondary Resistance;Molecular Targeted Therapy;
通信作者&本文,Email: gi.tmuh@sohu.com
DOI:*基金项目:国家自然科学基金青年科学基金项目(81000157);#Email: zhengjia2255@126.com