周开胜
(1.南京师范大学地理科学学院,江苏 南京 210023;2.蚌埠学院应用化学与环境工程系,安徽 蚌埠 233030)
西瓜在中国夏季水果中占有十分重要的地位,其种植面积和产量约占世界的1/2 ,随着西瓜生产的产业化、规模化发展,西瓜专化型尖孢镰刀菌引起的西瓜枯萎病日渐突出。西瓜枯萎病防治方法,主要有曝晒土壤[6]、嫁接[7]、药剂熏蒸土壤[7]、高温闷棚杀菌[8]、深翻改土[9]、与其他作物套作或间作[10]、秸秆反应堆技术[11]、施用生物有机肥[12]、生物制剂[13]、生物防治[14]、加强作物残余物管理和有机改良[15]等,但均未能有效地抑制西瓜专化型尖孢镰刀菌。
21 世纪初在日本[16]和荷兰[17]分别独立发展起来的厌氧还原土壤灭菌法,目前在日本[16,18-26]、荷兰[17,27-28]、美国[29-32]和意大利[33]得到广泛运用和发展,但各国对该方法命名不尽相同。在日本叫生物土壤灭菌法(Biological soil disinfestation,BSD),也称还原土壤灭菌法(Reductive soil disinfestation,RSD);在荷兰叫生物土壤灭菌法,也称厌氧土壤灭菌法(Anaerobic soil disinfestation,ASD);在美国称之为厌氧土壤灭菌法[19]。厌氧还原土壤灭菌法基本步骤是:在土壤中添加易分解的有机物料(常用有机物料有芸苔、麦麸、米糠、糖浆等),灌溉淹水,上覆不透气塑料薄膜,密封3周,创造强还原土壤环境,达到改良土壤理化性质和杀灭土传植物病原菌目的[16,26]。
本研究采用厌氧还原土壤灭菌法,试图抑制土壤中西瓜专化型尖孢镰刀菌,使得短时间内土壤中西瓜专化型尖孢镰刀菌(FON)数量下降,从而达到防治西瓜枯萎病的目的。
本研究于2013年3月,在蚌埠市李楼乡张巷村采集连作10年西瓜土约18 kg,用于土壤处理试验。稻草和玉米秸秆分别取自蚌埠市李楼乡张巷村和凤阳县临淮镇南小庄,粉碎成粉末后用于土壤处理,稻草和玉米秸秆碳、氮含量如表1所示。
表1 稻草和玉米秸秆碳、氮含量Table 1 The carbon and nitrogen contents in rice straw and corn stalk
根据厌氧还原土壤灭菌法,试验共设8个处理:不添加物料不加水处理(对照)、只淹水处理、少量稻草+淹水处理、高量稻草+淹水处理、少量玉米秸秆+淹水处理、高量玉米秸秆+淹水处理、高量稻草+饱和水处理、高量玉米秸秆+饱和水处理,其中,少量稻草、玉米秸秆用量均为0.35%(质量比),高量稻草、玉米秸秆均为0.70%(质量比),30℃恒温箱密封培养,每组设3个平行样,总共24份处理样品,每份处理土壤样品平均为0.75 kg。每5 d取样分析1次,共取样6次。
细菌、放线菌、真菌和尖孢镰刀菌分别采用牛肉膏蛋白胨琼脂培养基、高氏1号培养基、孟加拉红培养基[34]、改良 Komada’s 培养基[35],30 ℃ 恒温培养,细菌培养2 d后平板涂布计数法计数,放线菌、尖孢镰刀菌和真菌培养4 d后平板涂布计数法计数。
土壤铵态氮、硝态氮用2 mol/L的KCl溶液提取(2 mol/L KCl溶液与土壤比为5∶1),连续流动仪(Skalar San++,Holland)测定;硫酸根离子用去离子水提取(水土比为 5∶1),离子色谱(Thermo Dionex ICS 1100,USA)测定;氧化还原电位(Eh)(原位监测)、pH值(水土比为 2.5∶1.0)用 METTLER TOLEDO SevenCompact pH/Lon氧化还原电位仪(Mettler S220K,Switzerland)测定;电导率(Ec,水土比为5∶1)用DDS-320型电导率仪(上海大普仪器有限公司生产)测定。
数据用Microsoft Excel2003处理,并用SPSS16.0软件进行差异显著性分析。
添加有机物料淹水,30℃恒温密封培养,可降低土壤Eh值[15],培养1 d后,除对照和只淹水处理的土壤Eh值为正值外,其他各处理的Eh值均为负值,但这些负值均高于-100 mV,属弱还原环境。培养5 d后,除对照和只淹水处理的土壤Eh值仍为正值外,其他各处理样品的Eh值全部是负值,均低于-100 mV,属强还原环境(图1)。厌氧还原土壤灭菌法可调节土壤pH值[36-40],培养20 d时,各处理样品的pH值均显著高于对照pH值,之后各处理土壤样品pH值虽有所降低,但仍显著高于对照(图2)。在整个培养过程中,对照和各处理土壤样品的电导率(Ec)值,多在0.10 ms/cm上下波动(图3)。
图1 不同处理下土壤氧化还原电位的变化Fig.1 The changes of redox potentials in differently treated soils
图2 不同处理下土壤p H值的变化Fig.2 The changes of pH values in differently treated soils
图3 不同处理下土壤电导率的变化Fig.3 The changes of electrical conductivities in differently treated soils
由于所采集的西瓜连作土壤源自西瓜水稻轮作土(即每年各种一季西瓜和水稻),此次取的土是在水稻种植收获完成后的稻田土,该连作10年西瓜土壤中尖孢镰刀菌含量达1 g土1×104CFU,高于1 g土1×103CFU的治病临界浓度[42]。经过处理后,只淹水处理土壤样品中尖孢镰刀菌数量与对照相比,在整个处理过程中变化不大,而其他处理中尖孢镰刀菌含量均显著低于对照和只淹水处理(图5)。真菌数量在整个处理过程中呈递减趋势,但各处理与对照相比,差异均不显著。
图4 土壤中主要离子浓度的变化Fig.4 The changes of main ion concentrations in differently treated soils
图5 土壤微生物数量的变化Fig.5 The microbiological changes in differently treated soils
厌氧还原土壤灭菌法杀灭土壤中土传病原菌的可能机理有:强还原环境[17],有机物料厌氧腐解产生的乙酸、丁酸和丙酸等有机酸[24]及 NH3和H2S[38-39]等挥发性物质对病原菌具有毒害作用,还原条件下形成的Fe2+和Mn2+离子是抑制尖孢镰刀菌的诱导因子[23],能有效地抑制土传病原菌。厌氧还原土壤灭菌法处理后的土壤pH值升高,对于酸性土壤的改良具有很好的效果[38-39],低Eh和高pH值可使土壤有益菌增加,尖孢镰刀菌减少。已有的 研究结果表明,厌氧还原土壤灭菌法能有效地抑制西红柿专化型尖孢镰刀菌(Fusarium oxysporum f.sp.Lycopersici),青 枯 雷 尔 氏 菌 (Ralstonia solanacearum)[22]、棉花根腐病菌(Phytophthora cactorum)[43]及香蕉专化型尖孢镰刀菌(Fusarium oxysporum f.sp.Cubense)[44]。
本研究使用的有机物料为稻草和玉米秸秆,二者对土壤Eh、pH值的影响及对尖孢镰刀菌抑制作用的差异不显著;采用淹水和饱和水处理对土壤真菌和尖孢镰刀菌的抑制作用及对土壤理化性质影响来看效果都很好,就节约水资源而言,饱和水处理可节约大量水资源,而且使用起来也比较便利。2种不同有机物料对土壤NH+4-N、NO-3-N影响的差异性不显著,就同一处理方法、同一处理时段而言,均表现出相似的变化规律,但用玉米秸秆处理后的土壤NH+4-N含量略高于稻草处理的土壤,这与玉米秸秆的碳氮比值较稻草低有关,另外,在处理西瓜连作土壤防治西瓜枯萎病时,可因地制宜,就地取材,选取最便利的有机物料。就同一种有机物料而言,高量稻草(或玉米秸秆)较低量稻草(或玉米秸秆)对尖孢镰刀菌的抑制效果更好。以上结果表明,厌氧还原土壤灭菌法处理西瓜连作土壤,可抑制西瓜专化型尖孢镰刀菌。
[1] 吴洪生.西瓜连作土传枯萎病微生物生态学机理及其生物防治[D].南京:南京农业大学,2008.
[2] 赵玉强,田艳丽,高杜娟,等.pyrG基因对西瓜噬酸菌致病性和组氨酸利用的影响[J].江苏农业学报,2014,30(6):1309-1315.
[3] 孙海燕,魏君革,徐锦华,等.PEG介导gus基因转化西瓜枯萎病菌[J].江苏农业学报,2014,30(2):275-281.
[4] 尚霄丽,张建鹏,李晓慧,等.不同类型肥料对西瓜叶片生长、膨瓜速度及产量的影响[J].江苏农业科学,2014,42(7):158-159.
[5] 苏卫国,郭 军,郑佳秋,等.西瓜与水生蔬菜水旱轮作模式栽培技术要点[J].江苏农业科学,2014,42(6):205-206.
[6] MANSOORIB,JALIANINK H.Control of soilborne pathogens of watermelon by solar heating[J].Crop Protection,1996,15(5):423-424.
[7] MIGUEL A,MAROTO JV,BAUTISTA A S,et al.The grafting of triploid watermelon is an advantageous alternative to soil fumigation by methyl bromide for control of Fusarium wilt[J].Scientia Horticulturae,2004,103(1):9-17.
[8] 蔡 贞,姚春霞,周 瑛,等.西瓜设施栽培连作病害枯萎病防治技术研究[J].江苏农业科学,2005(3):69-70,97.
[9] 张学伟,黄学森,古琴生,等.西瓜连作障碍及其防治方法[J].中国西瓜甜瓜,1993(2):21-23.
[10] REN L,SU S,YANGX,et al.Intercropping with aerobic rice suppressed Fusarium wilt in watermelon[J].Soil Biology& Biochemistry,2008,40(3):834-844.
[11]宋尚成,朱凤霞,刘润进,等.秸秆生物反应堆对西瓜连作土壤微生物数量和土壤酶活性的影响[J].微生物学通报,2010,37(5):696-700.
[12] LING N,ZHANG W,TAN S,et al.Effect of the nursery application of bioorganic fertilizer on spatial distribution of Fusarium oxysporum f.sp.niveum and its antagonistic bacterium in the rhizosphere of watermelon[J].Applied Soil Ecology,2012,59:13-19.
[13] DE C A,SZTEJNBERG A,SABUQUILLO P,et al.Management Fusarium wilt on melon and watermelon by Penicillium oxalicum[J].Biological Control,2009,51(3):480-486.
[14] ALABOUVETTE C,OLIVAIN C,STEINBERG C.Biological control of plant diseases:the European situation[J].European Journal of Plant Pathology,2006,114:329-341.
[15] BAILEY K L,LAZAROVITS G.Suppressing soil-borne diseases with residue management and organic amendments[J].Soil and Tillage Research,2003,72(2):169-180.
[16] SHINMURA A.Causal agent and control of root rot of welsh onion[J].Phytopathological Society of Japan,Soilborne Disease Workshop Report,2000,20:133-143.
[17] BLOK W J,LAMERSJ G,TERMORSHUIZEN A J,et al.Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping[J].Phytopathology,2000,90(3):253-259.
[18] EBIHARA Y,UEMATSU S.Survival of strawberry-pathogenic fungi Fusarium oxysporum f.sp.fragariae,Phytophthora cactorum and Verticillium dahliae under anaerobic conditions[J].J Gen Plant Pathol,2014,80:50-58.
[19] MOMMA N,KOBARA Y,UEMATSU S,et al.Development of biological soil disinfestations in Japan[J].Appl Microbiol Biotechnol,2013,97:3801-3809.
[20] MOWLICK S,TAKEHARA T,KAKU N,et al.Proliferation of diversified clostridial species during biological soil disinfestation incorporated with plant biomass under various conditions[J].Appl Microbiol Biotechnol,2013,97:8365-8379.
[21] MOWLICK S,INOUE T,TAKEHARA T,et al.Changes and recovery of soil bacterial communities influenced by biological soil disinfestation as compared with chloropicrin-treatment[J].AMB Express,2013,3:46.
[22] MOMMA N,YAMAMOTO K,SIMANDI P,et al.Role of organic acids in the mechanisms of biological soil disinfestation(BSD)[J].J Gen Plant Pathol,2006,72:247-252.
[23] MOMMA N,KOBARA Y,MOMMA M.Fe2+and Mn2+,potential agents to induce suppression of Fusarium oxysporum for biological soil disinfestation[J].J Gen Plant Pathol,2011,77:331-335.
[24] MOMMA N,MOMMA M,KOBARA Y.Biological soil disinfesta-tion using ethanol:effect on Fusarium oxysporum f.sp.lycopersici and soil microorganisms[J].J Gen Plant Pathol,2010,76:336-344.
[25] MOMMA N.Biological soil disinfestation(BSD)of soilborne pathogens and its possible mechanisms[J].Japan Agric Research Quarterly,2008,42:7-12.
[26] SHINMURA A.Principle and effect of soil sterilization method by reducing redox potential of soil[J].Phytopathological Society of Japan,Soilborne Disease Workshop Report,2004,22:2-12.
[27] OVERBEEK L V,RUNIA W,KASTELEIN P,et al.Anaerobic disinfestation of tare soils contaminated with Ralstonia solanacearum biovar 2 and Globodera pallida[J].Eur J Plant Pathol,2014,138:323-330.
[28] MESSIHA N A S,DIEPENINGEN A D,WENNEKER M,et al.Biological soil disinfestation(BSD),a new control method for potato brown rot,caused by Ralstonia solanacearum race 3 biovar 2[J].Eur JPlant Pathol,2007,117:403-415.
[29] BUTLER D M,ROSSKOPF E N,KOKALISB N,et al.Exploring warm-season cover crops as carbon sources for anaerobic soil disinfestation(ASD)[J].Plant Soil,2012,355:149-165.
[30] BUTLER D M,KOKALIS-BURELLE N,Albano J P,et al.Anaerobic soil disinfestation(ASD)combined with soil solarization as a Methyl bromide alternative:vegetable crop performance and soil nutrient dynamics[J].Plant Soil,2014,378:365-381.
[31] HEWAVITHARANA S S,RUDDELL D,MAZZOLA M.Carbon source-dependent antifungal and nematicidal volatiles derived during anaerobic soil disinfestation[J].Eur J Plant Pathol,2014,140:39-52.
[32] DOMINGUEZ P,MIRANDA L,SORIA C,et al.Soil biosolarization for sustainable strawberry production[J].Agron Sustain Dev,2014,34:821-829.
[33] COLLA P,GILARDI G,GULLINO M L.A review and critical analysis of the European situation of soilborne disease management in the vegetable sector[J].Phytoparasitica,2012,40:515-523.
[34]方中达.植病研究方法[M].3版.北京:中国农业出版社,1998.
[35] SUN E J,SU H J,KO W H.Identification of Fusarium oxysporum f.sp.cubense Race4 from soil or host tissue by cultural characters[J].Phytopathology,1978,68:1672-1673.
[36]朱同彬,张金波,蔡祖聪.淹水条件下添加有机物料对蔬菜地土壤硝态氮及氮素气体排放的影响[J].应用生态学报,2012,23(1):109-114.
[37]朱同彬,孟天竹,张金波,等.强还原方法对退化设施蔬菜地土壤的修复[J].应用生态学报,2013,24(9):2619-2624.
[38]黄新琦,温 腾,孟 磊,等.土壤快速强烈还原法对尖孢镰刀菌的抑制作用[J].生态学报,2014,34(16):4526-4534.
[39]黄新琦,温 腾,孟 磊,等.土壤厌氧还原消毒对尖孢镰刀菌的抑制研究[J].土壤,2014,46(5):851-855.
[40] BAUHUSJ,MEYER A C,BRUMME R.Effect of the inhibitors nitrapyrin and sodium chlorate on nitrification and N2O formation in an acid forest soil[J].Biology and Fertility of Soils,1996,22:318-325.
[41] WOLF I,RUSSOW R.Different pathways of formation of N2O,N2and NO in black earth soil[J].Soil Biology and Biochemistry,2000,32:229-239.
[42]何 欣,黄启为,杨兴明,等.香蕉枯萎病致病菌筛选及致病菌浓度对香蕉枯萎病的影响[J].中国农业科学,2010,43(18):3809-3816.
[43] GAXIOLA S J A,BALAGURUSAMY N.Survival of soil-borne fungus Phymatotrichopsis omnivore after exposure to volatile fatty acids[J].J Gen Plant Pathol,2013,79:105-109.
[44] HUANGX Q,WEN T,ZHANG JB,et al.Toxic organic acids produced in biological soil disinfestation mainly caused the suppression of Fusarium oxysporum f.sp.cubense[J].Bio Control,2015,60:113-124.