间歇运动对心梗大鼠心肌LIF及其受体表征和细胞凋亡的影响

2015-02-14 00:58田振军贾单单蔡梦昕DuShaojun
体育科学 2015年12期
关键词:间歇心梗心肌细胞

田振军,贾单单,蔡梦昕,Du Shaojun



间歇运动对心梗大鼠心肌LIF及其受体表征和细胞凋亡的影响

田振军1,贾单单1,蔡梦昕1,Du Shaojun2

目的:探讨间歇运动对心肌梗死(myocardial infarction,MI)大鼠心肌细胞凋亡和心肌白血病抑制因子(Leukemia inhibitory factor,LIF)及其受体LIFR表征的影响。方法:3月龄SD雄性大鼠,随机分为假手术组(Sham)、心梗安静组(MI)、心梗+间歇运动组(ME),每组12只。左冠状动脉前降支(Left anterior descending coronary artery,LAD)结扎建立MI模型,ME组采用小动物跑台进行8周间歇训练。训练结束后次日腹腔麻醉,血流动力学方法评定心功能,Masson染色观察分析心肌胶原容积(Collagen volume fraction,CVF)百分比,TUNEL法检测细胞凋亡,Western Blot检测心肌Bcl-2、Bax、LIF、LIFR、p-STAT3和STAT3蛋白表达,RT-qPCR检测心肌lif和lifrmRNA表达。结果:心梗大鼠心功能显著降低,心肌纤维化水平和细胞凋亡显著增加。间歇运动可有效改善心梗大鼠心功能,降低心肌纤维化水平,升高Bcl-2/Bax比值,减少TUNEL阳性颗粒,上调心肌LIF及LIFR蛋白与基因的表达和STAT3磷酸化水平。结论:间歇运动可显著促进心梗大鼠心肌LIF蛋白表达,激活LIF/LIFR/STAT3通路,抑制心肌细胞凋亡,改善心梗心脏病理重塑和心功能。开展运动干预缺血心脏LIF表征研究与心脏的保护效应,将为心梗患者运动康复手段筛选提供新思路。

间歇运动;心肌梗死;细胞凋亡;白血病抑制因子;鼠;动物实验

心梗(myocardial infarction,MI)导致心肌缺血缺氧、炎症反应、氧化应激、心肌细胞坏死和凋亡显著增加,心肌胶原异常增生,发生替代性纤维化,心功能紊乱[10,14,25]。临床研究表明,运动可作为治疗和预防心梗的重要手段[4,12,29],适宜的运动训练可降低心梗患者死亡率、复发率、心肌炎症反应[28]和细胞凋亡水平[1],减轻心肌纤维化[37],改善组织重塑和心功能紊乱[26]。运动可改善老龄心脏的心功能,减少心脏病风险,改善线粒体功能紊乱诱导的细胞凋亡[22]。有氧能力与心脏病的发病率和死亡率呈负相关,间歇运动可作为心梗患者的主要运动方式[8]。

白血病抑制因子(Leukemia inhibitory factor,LIF)属于IL-6家族的多效分子,在细胞增殖与凋亡[36]、胚胎分化与发育[13]、神经免疫应答[17]、多功能干细胞诱导[34]、血管形成和能量代谢[39]等方面发挥重要作用。LIF预处理可改善心肌缺氧/复氧导致的细胞凋亡与损伤[33],抑制心梗大鼠心肌细胞凋亡,促进心肌再生[42]。Berry等报道,心梗大鼠心肌缺血部位外源性注射LIF可降低心肌细胞凋亡指数,保护心脏组织结构和功能[5]。LIF与其受体LIFR-gp130结合可激活JAK2-STAT3通路,在消耗心衰患者心肌谷胱甘肽、减少活性氧产生和抑制心肌细胞凋亡等方面发挥重要作用[21],LIF是近年来高度关注的心肌保护因子,也是收缩诱导的肌肉因子。运动训练可促进骨骼肌分泌LIF[16],但运动改善心梗大鼠心功能是否与LIF有关,鲜见文献报道。因此,本研究拟探讨间歇运动对心梗大鼠心肌LIF及其受体表征和细胞凋亡的影响。

1 材料与方法

1.1 主要仪器和试剂

主要试剂:Tween20、BCA蛋白定量试剂盒、DAB显色试剂盒(武汉博士德)、TAKARA-RNA定量反转录试剂盒、兔抗多克隆抗体LIF(美国Abcam)、LIFR(美国GeneTex)、p-STAT3/Tyr705(Cell Signaling Technology)、Bcl-2(Bioworld)、小鼠多克隆抗体STAT3(Cell Signaling Technology)、Bax(Bioworld)、TUNEL细胞凋亡检测试剂盒(碧云天)、PCR引物(上海生工)等。

主要仪器:PowerLab 8/30生理信号采集系统、BM-II型病理组织包埋机、YT-6C生物组织摊烤片机、LEICA-RM2126切片机、Bio-Rad电泳仪和转移槽、凝胶成像系统、BX51奥林巴斯光学显微镜、尼康荧光显微镜、RT-qPCR仪等。

1.2 动物分组与MI模型制备

动物分组:清洁级3月龄雄性Sprague-Dawley大鼠40只(购于西安交通大学实验动物管理中心,动物质量合格证号:陕医动证字08-004),体重180~220 g,分笼饲养,每笼6只,啮齿类动物干饲料喂养,自由饮食。动物室温为20~29℃,相对湿度为40%~50%。适应喂养1周后,进行左冠状动脉前降支(LAD)结扎手术,术后存活36只,随机分为假手术组(Sham)、心梗安静组(MI)、心梗+间歇运动组(ME),每组12只。

MI模型制备:5%戊巴比妥钠腹腔麻醉,采用大鼠呼吸面罩进行呼吸机辅助呼吸(60次/min,潮气量16 ml,呼吸比2∶1),连接心电图。开胸,在左心耳和肺动脉圆锥交界下缘1~2 mm处进针结扎,以心电图ST段抬高或T波倒置、心肌颜色变浅或变白作为建模成功的标准,逐层缝合关胸。

1.3 运动方案

1.4 心功能指标测定

采用PowerLab 8/30生理信号采集系统检测大鼠心脏血流动力学指标,评定大鼠心功能。8周运动结束后,常规称体重、腹腔麻醉、测定心电图。右颈总动脉逆行插管至左心室,测试左室收缩压(Left ventricular systolic pressure,LVSP)、左室舒张末压(Left ventricular end-diastolic pressure,LVEDP)、左室压力最大上升速率(+dp/dtmax)和最大下降速压(-dp/dtmax)。

1.5 心脏样本处理与MASSON染色

待心功能指标测毕后,迅速摘取心脏,除血称重。将心脏组织分为两部分,一部分组织置于液氮固定24 h后,转至-80℃低温冰箱保存。另一部分组织学样本置于10%中性甲醛液固定24 h,常规石蜡包埋、制片(5 μm),Masson染色,光学显微镜观察、拍摄,Image-Pro Plus分析心肌胶原容积百分数(CVF%)。

1.6 免疫荧光组化实验和TUNEL染色

切片脱蜡至水,PBS清洗,微波抗原修复,PBS清洗,正常山羊血清封闭(37℃,40 min),孵育一抗(LIF,1∶50,LIFR,1∶200,4℃过夜),PBS清洗,孵育二抗(37℃,30 min),PBS清洗,甘油加PBS封闭液封片,镜检。每组均设置空白对照(PBS代替一抗和二抗)和阴性对照(PBS代替一抗)。TUNEL检测用切片经脱蜡至水,滴加20 μg/ml不含DNase的蛋白酶K(37℃,30 min),PBS清洗(5 min/次×5次),严格按照试剂说明书配置TUNEL检测液,充分混匀,滴加于待测样品上(37℃,60 min),PBS清洗(5 min/次×3次),抗荧光淬灭封片液封片。尼康荧光显微镜观察摄片。

1.7 Western Blot和RT-qPCR实验

用于Western Blot实验的心肌组织,常规研磨、蛋白抽提、SDS聚丙烯酰胺凝胶电泳,300 mA恒流转膜,3%BSA封闭,孵育一抗LIF/LIFR(1∶500/1∶200,4℃过夜)、STAT3/p-STAT3(1∶2 000/1∶1 000)、Bcl-2/Bax(1∶500/1∶100)。TBST清洗(5 min/次×5次),孵育二抗(40 min,室温),TBST清洗,ECL液发光成像。内参为GAPDH(1∶10 000)。

RNA提取,用Trizol试剂提取心肌总RNA,严格按照TAKARA-RNA定量和反转录试剂盒说明书操作,将RNA反转录为cDNA,利用已选取的引物,进行RT-qPCR实验,内参为GAPDH。引物序列为:lif,F 5′ TCAACTGGCTCAACTCAACG 3′,R 5′ ACCATCCGATACAGCTCGAC 3′,退火温度60℃;lifr,F 5′ TACAACGAAGGTGCTTTCAGG 3′,R 5′ GCAAGTTCTTCAAACCTGTGG 3′,退火温度58℃[20];gapdh,F 5′ CAGTGCCAGCCTCGTCTCAT 3′,R 5′ AGGGGCCATCCACAGTCTTC 3′,退火温度55℃。

1.8 数据采集与统计学处理

2 实验结果

2.1 心功能测定结果

与Sham组比较,MI组LVSP和±dp/dtmax显著降低(P<0.01),LVEDP显著升高(P<0.01);与MI组比较,ME组LVSP和±dp/dtmax显著升高(P<0.01,P<0.05),LVEDP显著降低(P<0.05,图1)。表明,心梗严重损伤心功能,间歇运动干预可有效改善心功能。

图1 本研究心脏血流动力学指标变化统计图

图2 本研究心肌Masson染色结果光镜观察图(×40和×200)

2.2 心肌间质胶原的Masson染色结果

光镜下,心肌细胞胞质呈粉红色、细胞核呈蓝褐色、心肌间质胶原呈蓝色。心脏梗死边缘区心肌组织被瘢痕组织取代,瘢痕区胶原纤维过度增生,呈条索状,呈放射状分布,梗死边缘区和非梗死区胶原纤维向周围间质延伸。与Sham组比较,MI组心肌胶原CVF%显著增加(P<0.01);与MI组比较,ME组心肌CVF%显著降低(P<0.01,图2)。表明间歇运动干预可抑制心梗区胶原纤维过度增生,改善心肌组织病理性重塑。

2.3 心肌TUNEL检测及细胞凋亡相关蛋白表达结果

TUNEL检测结果显示,TUNEL阳性颗粒分布于细胞核部位。与Sham组比较,MI组TUNEL阳性颗粒显著增加(P<0.01);与MI比较,ME组TUNEL阳性颗粒显著减少(P<0.01)。Western Blot结果显示,与Sham组比较,MI组Bcl-2表达显著减少(P<0.01),Bax表达显著增加(P<0.01),Bcl-2/Bax比值显著降低(P<0.01);与MI组比较,ME组Bcl-2表达显著增加(P<0.01),Bax表达显著降低(P<0.01),Bcl-2/Bax比值显著升高(P<0.01,图3)。

图3 本研究心肌TUNEL、Bcl-2、Bax和Bcl-2/Bax表达分析荧光显微观察和统计图(×100)

2.4 心肌lif及其受体基因表达结果

RT-qPCR结果显示,与Sham组比较,MI组心肌lif和lifrmRNA表达显著增加(P<0.01,P<0.05);与MI组比较,ME组心肌lif和lifrmRNA表达显著增加(P<0.01,图4)。表明心梗大鼠心肌组织lif及其受体基因应激性升高,间歇运动干预可显著促进心肌组织lif及其受体基因表达。

图4 本研究梗死边缘区lif和lifr mRNA表达统计图

2.5 心梗边缘区LIF及其下游通路蛋白表达结果

Western Blot结果显示:与Sham组比较,MI组LIF/LIFR(P<0.05,P<0.01)蛋白表达和STAT3(P<0.01)磷酸化水平显著升高;与MI组比较,ME组 LIF/LIFR(P<0.01,P<0.05)表达和STAT3磷酸化水平显著升高(P<0.01,图5)。表明,大鼠心梗边缘区LIF及其下游通路被应激性激活;间歇运动显著促进LIF表达,进一步激活其下游通路。推测,间歇运动干预改善心功能可能与LIF高表达及LIFR-STAT3通路激活有关。

3 讨论与分析

3.1 大鼠间歇运动可产生心肌再重构并改善心功能效应

图5 本研究心梗边缘区LIF/LIFR/STAT3通路蛋白表达统计图

3.2 间歇运动可激活心梗大鼠心脏LIF/LIFR/STAT3通路,抑制心肌细胞凋亡

研究表明,心梗后心脏发生缺血缺氧、炎症和氧化应激反应,线粒体功能紊乱,梗死边缘区心肌细胞发生不同程度凋亡,心室发生病理性重构,心功能严重受损[14,15]。运动特别是长期运动可有效减轻心梗心肌细胞凋亡[1]和心肌纤维化现象,促进心脏生理性肥大[27]以及老年大鼠HSP70和线粒体SOD水平增加,显著减少心肌细胞凋亡[30]。本研究结果显示,心梗大鼠心肌细胞凋亡显著增加,间歇运动干预降低了心梗心肌细胞凋亡。文献表明,心脏存在LIF靶基因,其受体LIFR广泛分布于心肌细胞膜上,参与心肌肥大、凋亡和血管新生[42,43]。正常情况下心肌lif基因处于沉默状态,心肌一旦受损,lif基因便被激活,心肌内源性LIF因子表达增加[39]。正常机体血清LIF表达量很少,一旦机体受到外界刺激如心梗,LIF靶器官大量分泌LIF因子[23],循环LIF浓度在一定时间段呈递增趋势[42]。LIF预处理心肌细胞,可调节其收缩功能,改变能量代谢[9]。病理情况下心脏中可检测到LIF表达和分泌,LIF预处理可减小心梗面积,抑制心脏病理性重构并改善心功能[40],改善心肌缺氧/复氧诱导的细胞凋亡和损伤[33]。LIF有助于动员骨髓源管家基因向心肌迁移,促进心肌自身干细胞分化为内皮细胞[19]。研究报道,LIF是IL-6家族成员,在抑制心肌细胞凋亡过程中发挥重要作用[18]。远隔器官注射外源性LIF可减小梗死面积,降低心肌纤维化,抑制细胞凋亡,促进细胞增殖和血管新生[42]。外源性LIF注射于靶器官心肌层缺血交界区,6周后发现心功能得到改善,细胞凋亡指数降低[5],推测LIF可能与抑制心梗心肌细胞凋亡和改善心功能关系密切。因此认为,LIF高表达有助于保护心脏。刺激内源性LIF分泌的手段与方法值得高度关注。运动是刺激机体内源性物质表达分泌的极其重要手段之一。目前发现,运动可诱导LIF分泌[6,16]。LIF可由骨骼肌和心肌等重要组织器官分泌。运动能否有效刺激靶器官或(和)远隔器官的内分泌功能产生心脏保护研究值得探讨。本研究结果显示,间歇运动显著促进心肌LIF及其受体蛋白和基因的表达。

近年发现,JAKs-STAT3通路受细胞因子刺激参与细胞增殖、分化、凋亡以及免疫调节等生物学过程,该信号通路与心力衰竭、心肌缺血引起的心功能障碍以及缺血预处理诱导的心肌保护密切相关[41]。STAT3是LIF的下游通路蛋白,LIF与其受体LIFR-gp130结合后,刺激JAKs和STAT3酪氨酸残基磷酸化,活化的STATs从细胞膜转位至细胞核,调节下游通路靶基因的表达,即LIF/LIFR-gp130/JAKs-STAT3通路被激活[24],该通路的激活可诱导心肌凋亡蛋白和血管新生相关因子表达,如Bcl-2、Bcl-xl,抑制心肌细胞凋亡[43]。LIF与其他IL-6家族因子拥有共同信号受体gp130,LIF结合LIFR与gp130形成异构二聚体后,激活下游通道JAKs-STAT3,保护受损心脏[18]。本研究实验发现,心梗大鼠心肌LIF及其受体蛋白、基因表达应激性升高,STAT3磷酸化水平增加,心肌细胞凋亡显著,心功能减弱;间歇有氧运动显著提高心梗大鼠心肌LIF及其受体蛋白与基因的表达水平和STAT3的磷酸化水平,减少心肌细胞凋亡,改善心功能。表明,间歇运动改善心梗大鼠心肌细胞凋亡,发挥心脏保护效应,可能与LIF-LIFR-STAT3通路的激活有关。

4 结论

间歇运动可显著促进心梗大鼠心肌LIF蛋白表达,激活LIF/LIFR/STAT3通路,抑制心肌细胞凋亡,改善心梗心脏病理重塑和心功能。开展运动干预缺血心脏LIF表征研究与心脏保护效应,将为心梗患者运动康复手段筛选提供新思路。

[1]蔡梦昕,王庆安,田振军.抗阻训练对心梗大鼠心肌Neuregulin-1的表征和心脏结构与功能的影响[J].体育科学,2014,34(9):23-29.

[2]田振军,贺志雄,刘智炜,等.持续和间歇有氧运动对心梗大鼠心肌Myostatin及其受体表达的影响[J].体育科学,2013,33(11):66-74.

[3]ALMEIDA S A,CLAUDIO E R,MENGAL V,etal.Exercise training reduces cardiac dysfunction and remodeling in ovariectomized rats submitted to myocardial infarction[J].PLoS One,2014,9(12):e115970.

[4]BEGOT I,PEIXOTO T C,GONZAGA L R,etal.A home-based walking program improves erectile dysfunction in men with an acute myocardial infarction[J].Am J Cardiol,2015,115(5):571-575.

[5]BERRY M F,PIROLLI T J,JAYASANKAR V,etal.Targeted overexpression of leukemia inhibitory factor to preserve myocardium in a rat model of postinfarction heart failure[J].J Thorac Cardiovasc Surg,2004,128(6):866-875.

[6]BROHOLM C,PEDERSEN B K.Leukaemia inhibitory factor an exercise-induced myokine[J].Exerc Immunol Rev,2010,16:77-85.

[7]BRUNING R S,STUREK M.Benefits of exercise training on coronary blood flow in coronary artery disease patients[J].Prog Cardiovasc Dis,2014,57(5):443-453.

[8]ELLIOTT A D,RAJOPADHYAYA K,BENTLEY D J,etal.Interval training versus continuous exercise in patients with coronary artery disease:A meta-analysis[J].Heart Lung Circ,2015,24(2):149-157.

[9]FLORHOLMEN G,AAS V,RUSTAN A C,etal.Leukemia inhibitory factor reduces contractile function and induces alterations in energy metabolism in isolated cardiomyocytes[J].J Mol Cell Cardiol,2004,37(6):1183- 1193.

[10]FONTES-CARVALHO R,SAMPAIO F,TEIXEIRA M,etal.Left ventricular diastolic dysfunction and E/E' ratio as the strongest echocardiographic predictors of reduced exercise capacity after acute myocardial infarction[J].Clin Cardiol,2015,38(4):222-229.

[11]GARZA M A,WASON E A,ZHANG J Q.Cardiac remodeling and physical training post myocardial infarction[J].World J Cardiol,2015,7(2):52-64.

[12]GIALLAURIA F,ACAMPA W,RICCI F,etal.Exercise training early after acute myocardial infarction reduces stress-induced hypoperfusion and improves left ventricular function[J].Eur J Nucl Med Mol Imaging,2013,40(3):315-324.

[13]GONG X,LOU J,LU Q,etal.Bu Shen Huo Xue decoction restores endometrial leukemia-inhibitory factor but not Angiopoietin-2 expression,and improves uterine receptivity in the controlled ovarian stimulation rat model[J].Exp Ther Med,2015,9(3):751-757.

[14]HASSAN M Q,AKHTAR M S,AKHTAR M,etal.Benidipine prevents oxidative stress,inflammatory changes and apoptosis related myofibril damage in isoproterenol-induced myocardial infarction in rats[J].Toxicol Mech Methods,2015,25(1):26-33.

[15]HE Q,ZHOU W,XIONG C,etal.Lycopene attenuates inflammation and apoptosis in post-myocardial infarction remodeling by inhibiting the nuclear factor-kappaB signaling pathway[J].Mol Med Rep,2015,11(1):374-378.

[16]HUNT L C,ANTHEA C C,GORMAN C M,etal.Alterations in the expression of leukemia inhibitory factor following exercise:Comparisons between wild-type and mdx muscles[J].PLoS Curr,2011,3:RRN1277.

[17]JANSSENS K,VAN D H C,BAEKELANDT V,etal.Leukemia inhibitory factor tips the immune balance towards regulatory T cells in multiple sclerosis[J].Brain Behav Immun,2015,45:180-188.

[18]KODAMA H,FUKUDA K,PAN J,etal.Leukemia inhibitory factor,a potent cardiac hypertrophic cytokine,activates the JAK/STAT pathway in rat cardiomyocytes[J].Circ Res,1997,81(5):656-663.

[19]KUCIA M,DAWN B,HUNT G,etal.Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction[J].Circ Res,2004,95(12):1191-1199.

[20]KURDI M,RANDON J,CERUTTI C,etal.Increased expression of IL-6 and LIF in the hypertrophied left ventricle of TGR(mRen2)27 and SHR rats[J].Mol Cell Biochem,2005,269(1-2):95-101.

[21]KURDI M,SIVAKUMARAN V,DUHE R J,etal.Depletion of cellular glutathione modulates LIF-induced JAK1-STAT3 signaling in cardiac myocytes[J].Int J Biochem Cell Biol,2012,44(12):2106-2115.

[22]KWAK H B.Effects of aging and exercise training on apoptosis in the heart[J].J Exerc Rehabil,2013,9(2):212-219.

[23]LEVY Y A,MAUSNER-FAINBERG K,VAKNIN-DEMBINSKY A,etal.Dysregulated production of leukemia inhibitory factor in immune cells of relapsing remitting multiple sclerosis patients[J].J Neuroimmunol,2015,278:85-89.

[24]LO N W,INTAWICHA P,CHIU Y T,etal.Leukemia inhibitory factor and fibroblast growth factor-2 critically and mutually sustain pluripotency of rabbit embryonic stem cells[J].Cell Transplant,2015,24(3):319-338.

[25]MELAMED K H,GOLDHABER S Z.Inflammation and myocardial infarction[J].Circulation,2014,130(24):e334-336.

[26]PEIXOTO T C,BEGOT I,BOLZAN D W,etal.Early exercise-based rehabilitation improves health-related quality of life and functional capacity after acute myocardial infarction:A randomized controlled trial[J].Can J Cardiol,2015,31(3):308-313.

[27]RAMASAMY S,VELMURUGAN G,SHANMUGHA R K,etal.MiRNAs with apoptosis regulating potential are differentially expressed in chronic exercise-induced physiologically hypertrophied hearts[J].PLoS One,2015,10(3):e0121401.

[28]RODRIGUES B,LIRA F S,CONSOLIM-COLOMBO F M,etal.Role of exercise training on autonomic changes and inflammatory profile induced by myocardial infarction[J].Mediat Inflamm,2014,2014:702473.

[29]SANCHIS-GOMAR F,FIUZA-LUCES CLUCIA A.Exercise as the master polypill of the 21st century for the prevention of cardiovascular disease[J].Int J Cardiol,2014,181C:360-361.

[30]SOUFI F G,FARAJNIA S,ASLANABADI N,etal.Long-term exercise training affects age-induced changes in HSP70 and apoptosis in rat heart[J].Gen Physiol Biophys,2008,27(4):263-270.

[31]TYAGI S C,JOSHUA I G.Exercise and nutrition in myocardial matrix metabolism,remodeling,regeneration,epigenetics,microcirculation,and muscle[J].Can J Physiol Pharmacol,2014,92(7):521-523.

[32]VAN A L N,VOSS S,CARAI P,etal.Osteoglycin prevents cardiac dilatation and dysfunction after myocardial infarction through infarct collagen strengthening[J].Circ Res,2015,116(3):425-436.

[33]WANG F,SETA Y,BAUMGARTEN G,etal.Functional significance of hemodynamic overload-induced expression of leukemia-inhibitory factor in the adult mammalian heart[J].Circulation,2001,103(9):1296-1302.

[34]WHITWORTH D J,OVCHINNIKOV D A,SUN J,etal.Generation and characterization of leukemia inhibitory factor-dependent equine induced pluripotent stem cells from adult dermal fibroblasts[J].Stem Cells Dev,2014,23(13):1515-1523.

[35]WISLØFF U,LOENNECHEN J P,CURRIE S,etal.Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility,Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction[J].Cardiovasc Res,2002,54(1):162-174.

[36]XU J,LI Z,XU P,etal.Protective effects of leukemia inhibitory factor against oxidative stress during high glucose-induced apoptosis in podocytes[J].Cell Stress Chaperon,2012,17(4):485-493.

[37]XU X,ZHAO W,WAN W,etal.Exercise training combined with angiotensin II receptor blockade reduces oxidative stress after myocardial infarction in rats[J].Exp Physiol,2010,95(10):1008-1015.

[38]YENGO C M,ZIMMERMAN S D,MCCORMICK R J,etal.Exercise training post-MI favorably modifies heart extracellular matrix in the rat[J].Med Sci Sports Exerc,2012,44(6):1005-1012.

[39]ZGHEIB C,KURDI M,ZOUEIN F A,etal.Acyloxy nitroso compounds inhibit LIF signaling in endothelial cells and cardiac myocytes:Evidence that STAT3 signaling is redox-sensitive[J].PLoS One,2012,7(8):e43313.

[40]ZGHEIB C,ZOUEIN F A,KURDI M,etal.Chronic treatment of mice with leukemia inhibitory factor does not cause adverse cardiac remodeling but improves heart function[J].Eur Cytokine Netw,2012,23(4):191-197.

[41]ZGHEIB C,ZOUEIN F A,KURDI M,etal.Differential STAT3 signaling in the heart:Impact of concurrent signals and oxidative stress[J].JAKSTAT,2012,1(2):101-110.

[42]ZOU Y,TAKANO H,MIZUKAMI M,etal.Leukemia inhibitory factor enhances survival of cardiomyocytes and induces regeneration of myocardium after myocardial infarction[J].Circulation,2003,108(6):748-753.

[43]ZOUEIN F A,KURDI M,BOOZ G W.LIF and the heart:Just another brick in the wall?[J].Eur Cytokine Netw,2013,24(1):11-19.

Effects of Interval Exercise on the Expression of Myocardial LIF and LIFR and Cell Apoptosis in a Rat Model with Myocardial Infarction

TIAN Zhen-jun1,JIA Dan-dan1,CAI Meng-xin1,DU Shao-jun2

Objectives:This study was carried out to determine the effects of interval exercise on myocardial cell apoptosis,expression of Leukemia inhibitory factor (LIF) and its reporter in rat with myocardial infarction (MI).Methods:Adult male sprague-dawley rats,3-month old,were randomly divided into three groups:Sham-operated group (Sham),sedentary MI group (MI) and MI with interval exercise group (ME).The MI model was established by ligation of the left anterior descending(LAD) coronary artery,and rats in ME were subjected to 8 weeks interval training.Cardiac function,heart tissue remodeling and cardiomyocyte apoptosis were evaluated after the training.The expression of LIF,LIFR,p-STAT3 and STAT3 was determined in the peri-infarcted area of the left ventricle by Western Blotting or RT-qPCR.Results:MI resulted in cardiac dysfunction and myocardial fibrosis,increasing the degree of myocardial cell apoptosis.Compared with MI group,interval exercise signaficantly improved cardiac function,attenuated myocardial remodeling by reducing CVF% and inhibited cardiomyocyte apoptosis in MI rats.Meanwhile,interval exercise training up-regulated the expression of LIF protein and lif and lifr mRNA,and activated the phosphorylation of STAT3 in myocardium of MI rats.Conclusion:Interval exercise inhibits myocardial cell apoptosis,up-regulates the expression of myocardial LIFs,and activates the signaling pathway of LIF/LIFR/STAT3 after MI.

intervalexercise;myocardialinfarction;apoptosis;Leukemiainhibitoryfactor;rat;experiment

2015-04-01;

2015-11-18

国家自然科学基金资助项目(31171141);陕西师范大学特色学科建设项目(2015-01)。

田振军(1965-),男,陕西绥德人,教授,博士研究生导师,主要研究方向为运动心血管生物学,E-mail:tianzj611@hotmail.com;贾单单(1989-),女,河南漯河人,在读硕士研究生,主要研究方向为运动心血管生物学;蔡梦昕(1987-),女,河南商丘人,在读博士研究生,主要研究方向为运动心血管生物学;Du Shaojun(1964-),男,山东烟台人,教授,博士研究生导师,主要研究方向为骨骼肌和心肌分子遗传学,E-mail:sdu@som.umaryland.edu。

1.陕西师范大学 体育学院暨运动生物学研究所,陕西 西安 710062;2.马里兰大学 医学院生物化学与分子生物学系,美国 巴尔地摩 MD 21202 USA 1.Shaanxi Normal University,Xi' an 710062,China.;2.University of Maryland,Baltimore,MD 21202 USA.

1000-677X(2015)12-0034-07

10.16469/j.css.201512005

G804.7

A

猜你喜欢
间歇心梗心肌细胞
高强度间歇运动在慢性病防治中的作用及机制研究进展
中年女性间歇习练太极拳的强度、能量消耗与间歇恢复探究分析
间歇供暖在散热器供暖房间的应用
circPRKCI靶向miR-217对缺氧/复氧诱导心肌细胞损伤的影响
有些咽痛是心梗信号
布托啡诺通过调控miR-665表达对脂多糖致心肌细胞炎症反应及细胞凋亡的影响
心梗猛于虎
诱发“心梗”的10个危险行为
FGF21作为运动因子在有氧运动抑制心梗心肌细胞凋亡中的作用及其机制探讨
人造鳐鱼