SVGLRAM:一种图像压缩新的方法

2014-11-29 09:27范云鹏郭小娥
考试周刊 2014年85期
关键词:误差算法

范云鹏 郭小娥

摘 要: 图像是人类获取信息和传递信息的重要手段,但是图像占有相当大的数据量。本文致力于研究矩阵的低秩逼近实现图像压缩,提出了一种矩阵广义低秩逼近算法中获得和的非迭代算法——SVGLRAM。通过在不同的人脸数据库上选取不同的参数做实验得知,这种算法能获得和GLRAM接近的误差和压缩比,并且具有很小的时间和空间复杂度。

关键词: 压缩 算法 误差

1.本文采用的方法

在SVD中,对图像矩阵奇异值分解后得到奇异值矩阵和正交矩阵U和V,其中矩阵U和V是由A的奇异值按照从大到小的次序对应的特征向量组成的,它们含有图像的重要信息,而在GLRAM算法中作者是通过计算M■=■A■■L■l■■A■和M■=■A■R■R■■A■■前几个最大的特征值对应的特征向量求出L和R。因此,结合SVD和GLRAM,本文创造性地提出一种求出L和R的非迭代算法,称之为SVGLRAM算法,步骤如下:

SVGLRAM算法

输入:A■,i=1…n,k

输出:L,R,M■,i=1…n

1.计算M=■A■A■■,对M做奇异值分解,选取U的前k列对应的矩阵作为L;

2.计算N=■A■■A■,对N做奇异值分解,选取V的前k列对应的矩阵作为R;

3.计算:M■=■L■A■R,然后利用■■=■LM■R■对各图像进行重构。

2.算法的测试

本文所采用的数据库为ORL人脸库和Yale人脸库。ORL人脸库是由英国剑桥Olivetti实验室从1992年4月到1994年4月期间拍摄的一系列人脸图像,Yale人脸库也是著名的人脸库,由耶鲁大学计算视觉与控制中心制作。

在算法的评价中,PSNR是评价各种算法的重要指标,PSNR反映重构图像和原图像的误差,我们选定相同的值观察各种算法的PSNR值,本文计算了ORL人脸数据库第一个人和YALE人脸数据库第一个人当k=5,k=10,k=20,k=30时各种算法重构的图像和PSNR值。

下表是对于取不同值时各种算法的PSNR和压缩比ρ:

我们通过重构图像的PSNR判断各算法的优劣。从表中可以看出,当k=5,SVD算法得出的PSNR最大,其次是GLRAM和SVGLRAM,它们计算的PSNR比较接近,最小的是2DPCA算法,当k=10,k=20,k=30也都有相同的变化趋势,对于SVD算法,在k阶逼近里面,它的误差是最小的,GLRAM和SVGLRAM误差比SVD大,但比2DPCA要小,2DPCA算法由于采用的是单边压缩,丢失了图像的单侧信息,所以误差是最大的。

3.小结

在本文中,结合SVD和GLRAM算法提出了一种计算和的非迭代算法—SVGLRAM算法。我们把该算法在ORL和YALE人脸数据库上做实验。我们是让取相同的值,这种思路SVD算出的PSNR最大,SVGLRAM算法位于中间,2DPCA最小,但是SVGLRAM算法是非迭代算法,所以这种算法较其他算法有一定的优越性。

参考文献:

[1]J.Ye.Generalized Low Rank Approximations of Matrices,Machine learning,2004:887-894.

[2]J.Ye.Generalized Low Rank Approximations of Matrices.Machine learning,2005,61(13):167-191.

[3]徐树方.矩阵计算的理论和方法(第4版).北京,北京大学出版社,2005:5-17.

猜你喜欢
误差算法
角接触球轴承接触角误差控制
Beidou, le système de navigation par satellite compatible et interopérable
基于MapReduce的改进Eclat算法
Travellng thg World Full—time for Rree
压力容器制造误差探究
进位加法的两种算法
算法初步两点追踪
误差分析我做主
基于增强随机搜索的OECI-ELM算法
一种改进的整周模糊度去相关算法