李会丽
摘要用三角对称下3d5组态离子的完全能量矩阵方法, 通过理论模拟电子顺磁共振EPR谱, 研究了Fe3+离子掺杂到石榴石晶体YAG(Y3Al5O12)和LAG(Lu3Al5O12)中形成的络合物离子(FeO6)9-的局域微观结构. 结果表明,掺杂体系YAG:Fe3+中络合物离子(FeO6)9-的FeO键长R为2.017 4 , LAG:Fe3+中络合物离子(FeO6)9-的R为2.029 6 , 与相应的实验数据吻合. 并且YIG(Y3Fe5O12) 和 Fe2O3光谱数据计算值与实验观测数据也一致.
关键词石榴石晶体; 微观结构; 光谱; 完全能量矩阵
中图分类号O56 文献标识码A文章编号10002537(2014)04005705
1理论方法
2计算结果与讨论
3结论
基于配体场理论,通过理论模拟电子顺磁共振EPR谱,计算了石榴石掺杂体系YAG:Fe3+和LAG:Fe3络合物离子(FeO6)9-的局域微观结构, 得出以下两点:
(1)掺杂体系中将会发生拉伸效应是由掺杂离子的半径大于主晶体中主离子的半径决定的, 以至于杂质离子将沿着C3轴向外推氧(O2-)配体;(2)当A4 从28.048 au增加到30.186 au时, 对两种掺杂晶体的扭曲参数(R的影响相似约减少0.030 , 而对扭曲参数Δθ的影响相差10倍左右.作者推测由于c占位离子的不同, 导致相同的Fe3+离子掺杂到两种晶体中, 引起明显的不同程度的影响.
参考文献:
[1]〖ZK(#〗KUANG X Y, CHEN Z H. Groundstate zerofield splitting for the Fe3+ ion in a cubic field[J]. Phys Rev B, 1987,36(1):797798.
[2]KUANG X Y. Analysis of the electron paramagnetic resonance zerofield splitting for Fe3+ in sapphire[J]. Phys Rev B, 1987,36(1):712714.
[3]GERLOCH M, SLADE R C. Ligandfield parameters[M]. Oxford: Cambridge University Press, 1973.
[4]SUGANO S, TANABE Y, KZMIMURA H. Multiplets of transition METAL ions in crystsls[M]. New York: Macmillan Press, 1970.
[5]SHARMA R R, DU T P. Zerofield splitting of sstate Ions I pointmultipole model[J]. Phys Rev, 1966,149(1):257269.
[6]HEMPEL J C, MILLER M E. Trigonal ligand field and zero field splitting diagrams for the d5 configuration[J]. J Chem Phys, 1976,64(11):43074313.
[7]GOPAL N O, NARASIMHULU K V, LAKSHMANA R J. Optical absorption, EPR infrared and Raman spectral studies of clinochlore mineral[J]. J Phys Chem Solids, 2004,65(11):18871993.
[8]NISTOR S V, GOOVAERTS E, SCHOEMAKER D. Trapped hole Fe3+centres in layered CdCl2:Fe crystals [J]. J Phys Condens Matter, 1994,13(6):26192630.
[9]EDGAR A. Electron paramagnetic resonance studies of divalent cobalt ions in some chloride salts [J]. J Phys C: Solid State Phys, 1976,23(9):43044314.〖ZK)〗
[10]〖ZK(#〗ZHENG W C, WU S Y. Local tilting angles τ for Fe+ in Cd2+ site and Fe3+ in Si4+ site of CdSiP2 semiconductor spectrochim [J]. Acta Part A, 2002,58(8):17791783.
[11]KUANG X Y, GOU Q Q, ZHOU K W. Theory of covalent magnetic exchange interaction for diiron(III) core in the active site of ribonucleotide reductase [J]. Phys Lett A, 2002,293(5):293298.
[12]CURIE D, BARTHON C, CANNY B. Covalent bonding of Mn2+ ions in octahedral and tetrahedral coordination [J] . J Chem Phys, 1971,61(8):30483062.
[13]YEOM T H, CHOH S H. EPR study of Fe3+ impurities in crystalline BiVO4 [J]. Phys Rev B, 1996,53(6):34153421.
[14]KUANG X Y, LU C. Characterization of electron transition energies and trigonal distortion of the (FeO6)9- coordination complex in the Al2O3 system: A simple method for transitionmetal ions in a trigonal field[J]. J Phys Chem A, 2006,110(39):1135311358.
[15]SHERMAN D M. The electronic structure of Fe3+ coordination sites in iron oxides. Applications to spectra, bonding, and magnetism[J]. Phys Chem Minerals, 1985,12(3):161175.
摘要用三角对称下3d5组态离子的完全能量矩阵方法, 通过理论模拟电子顺磁共振EPR谱, 研究了Fe3+离子掺杂到石榴石晶体YAG(Y3Al5O12)和LAG(Lu3Al5O12)中形成的络合物离子(FeO6)9-的局域微观结构. 结果表明,掺杂体系YAG:Fe3+中络合物离子(FeO6)9-的FeO键长R为2.017 4 , LAG:Fe3+中络合物离子(FeO6)9-的R为2.029 6 , 与相应的实验数据吻合. 并且YIG(Y3Fe5O12) 和 Fe2O3光谱数据计算值与实验观测数据也一致.
关键词石榴石晶体; 微观结构; 光谱; 完全能量矩阵
中图分类号O56 文献标识码A文章编号10002537(2014)04005705
1理论方法
2计算结果与讨论
3结论
基于配体场理论,通过理论模拟电子顺磁共振EPR谱,计算了石榴石掺杂体系YAG:Fe3+和LAG:Fe3络合物离子(FeO6)9-的局域微观结构, 得出以下两点:
(1)掺杂体系中将会发生拉伸效应是由掺杂离子的半径大于主晶体中主离子的半径决定的, 以至于杂质离子将沿着C3轴向外推氧(O2-)配体;(2)当A4 从28.048 au增加到30.186 au时, 对两种掺杂晶体的扭曲参数(R的影响相似约减少0.030 , 而对扭曲参数Δθ的影响相差10倍左右.作者推测由于c占位离子的不同, 导致相同的Fe3+离子掺杂到两种晶体中, 引起明显的不同程度的影响.
参考文献:
[1]〖ZK(#〗KUANG X Y, CHEN Z H. Groundstate zerofield splitting for the Fe3+ ion in a cubic field[J]. Phys Rev B, 1987,36(1):797798.
[2]KUANG X Y. Analysis of the electron paramagnetic resonance zerofield splitting for Fe3+ in sapphire[J]. Phys Rev B, 1987,36(1):712714.
[3]GERLOCH M, SLADE R C. Ligandfield parameters[M]. Oxford: Cambridge University Press, 1973.
[4]SUGANO S, TANABE Y, KZMIMURA H. Multiplets of transition METAL ions in crystsls[M]. New York: Macmillan Press, 1970.
[5]SHARMA R R, DU T P. Zerofield splitting of sstate Ions I pointmultipole model[J]. Phys Rev, 1966,149(1):257269.
[6]HEMPEL J C, MILLER M E. Trigonal ligand field and zero field splitting diagrams for the d5 configuration[J]. J Chem Phys, 1976,64(11):43074313.
[7]GOPAL N O, NARASIMHULU K V, LAKSHMANA R J. Optical absorption, EPR infrared and Raman spectral studies of clinochlore mineral[J]. J Phys Chem Solids, 2004,65(11):18871993.
[8]NISTOR S V, GOOVAERTS E, SCHOEMAKER D. Trapped hole Fe3+centres in layered CdCl2:Fe crystals [J]. J Phys Condens Matter, 1994,13(6):26192630.
[9]EDGAR A. Electron paramagnetic resonance studies of divalent cobalt ions in some chloride salts [J]. J Phys C: Solid State Phys, 1976,23(9):43044314.〖ZK)〗
[10]〖ZK(#〗ZHENG W C, WU S Y. Local tilting angles τ for Fe+ in Cd2+ site and Fe3+ in Si4+ site of CdSiP2 semiconductor spectrochim [J]. Acta Part A, 2002,58(8):17791783.
[11]KUANG X Y, GOU Q Q, ZHOU K W. Theory of covalent magnetic exchange interaction for diiron(III) core in the active site of ribonucleotide reductase [J]. Phys Lett A, 2002,293(5):293298.
[12]CURIE D, BARTHON C, CANNY B. Covalent bonding of Mn2+ ions in octahedral and tetrahedral coordination [J] . J Chem Phys, 1971,61(8):30483062.
[13]YEOM T H, CHOH S H. EPR study of Fe3+ impurities in crystalline BiVO4 [J]. Phys Rev B, 1996,53(6):34153421.
[14]KUANG X Y, LU C. Characterization of electron transition energies and trigonal distortion of the (FeO6)9- coordination complex in the Al2O3 system: A simple method for transitionmetal ions in a trigonal field[J]. J Phys Chem A, 2006,110(39):1135311358.
[15]SHERMAN D M. The electronic structure of Fe3+ coordination sites in iron oxides. Applications to spectra, bonding, and magnetism[J]. Phys Chem Minerals, 1985,12(3):161175.
摘要用三角对称下3d5组态离子的完全能量矩阵方法, 通过理论模拟电子顺磁共振EPR谱, 研究了Fe3+离子掺杂到石榴石晶体YAG(Y3Al5O12)和LAG(Lu3Al5O12)中形成的络合物离子(FeO6)9-的局域微观结构. 结果表明,掺杂体系YAG:Fe3+中络合物离子(FeO6)9-的FeO键长R为2.017 4 , LAG:Fe3+中络合物离子(FeO6)9-的R为2.029 6 , 与相应的实验数据吻合. 并且YIG(Y3Fe5O12) 和 Fe2O3光谱数据计算值与实验观测数据也一致.
关键词石榴石晶体; 微观结构; 光谱; 完全能量矩阵
中图分类号O56 文献标识码A文章编号10002537(2014)04005705
1理论方法
2计算结果与讨论
3结论
基于配体场理论,通过理论模拟电子顺磁共振EPR谱,计算了石榴石掺杂体系YAG:Fe3+和LAG:Fe3络合物离子(FeO6)9-的局域微观结构, 得出以下两点:
(1)掺杂体系中将会发生拉伸效应是由掺杂离子的半径大于主晶体中主离子的半径决定的, 以至于杂质离子将沿着C3轴向外推氧(O2-)配体;(2)当A4 从28.048 au增加到30.186 au时, 对两种掺杂晶体的扭曲参数(R的影响相似约减少0.030 , 而对扭曲参数Δθ的影响相差10倍左右.作者推测由于c占位离子的不同, 导致相同的Fe3+离子掺杂到两种晶体中, 引起明显的不同程度的影响.
参考文献:
[1]〖ZK(#〗KUANG X Y, CHEN Z H. Groundstate zerofield splitting for the Fe3+ ion in a cubic field[J]. Phys Rev B, 1987,36(1):797798.
[2]KUANG X Y. Analysis of the electron paramagnetic resonance zerofield splitting for Fe3+ in sapphire[J]. Phys Rev B, 1987,36(1):712714.
[3]GERLOCH M, SLADE R C. Ligandfield parameters[M]. Oxford: Cambridge University Press, 1973.
[4]SUGANO S, TANABE Y, KZMIMURA H. Multiplets of transition METAL ions in crystsls[M]. New York: Macmillan Press, 1970.
[5]SHARMA R R, DU T P. Zerofield splitting of sstate Ions I pointmultipole model[J]. Phys Rev, 1966,149(1):257269.
[6]HEMPEL J C, MILLER M E. Trigonal ligand field and zero field splitting diagrams for the d5 configuration[J]. J Chem Phys, 1976,64(11):43074313.
[7]GOPAL N O, NARASIMHULU K V, LAKSHMANA R J. Optical absorption, EPR infrared and Raman spectral studies of clinochlore mineral[J]. J Phys Chem Solids, 2004,65(11):18871993.
[8]NISTOR S V, GOOVAERTS E, SCHOEMAKER D. Trapped hole Fe3+centres in layered CdCl2:Fe crystals [J]. J Phys Condens Matter, 1994,13(6):26192630.
[9]EDGAR A. Electron paramagnetic resonance studies of divalent cobalt ions in some chloride salts [J]. J Phys C: Solid State Phys, 1976,23(9):43044314.〖ZK)〗
[10]〖ZK(#〗ZHENG W C, WU S Y. Local tilting angles τ for Fe+ in Cd2+ site and Fe3+ in Si4+ site of CdSiP2 semiconductor spectrochim [J]. Acta Part A, 2002,58(8):17791783.
[11]KUANG X Y, GOU Q Q, ZHOU K W. Theory of covalent magnetic exchange interaction for diiron(III) core in the active site of ribonucleotide reductase [J]. Phys Lett A, 2002,293(5):293298.
[12]CURIE D, BARTHON C, CANNY B. Covalent bonding of Mn2+ ions in octahedral and tetrahedral coordination [J] . J Chem Phys, 1971,61(8):30483062.
[13]YEOM T H, CHOH S H. EPR study of Fe3+ impurities in crystalline BiVO4 [J]. Phys Rev B, 1996,53(6):34153421.
[14]KUANG X Y, LU C. Characterization of electron transition energies and trigonal distortion of the (FeO6)9- coordination complex in the Al2O3 system: A simple method for transitionmetal ions in a trigonal field[J]. J Phys Chem A, 2006,110(39):1135311358.
[15]SHERMAN D M. The electronic structure of Fe3+ coordination sites in iron oxides. Applications to spectra, bonding, and magnetism[J]. Phys Chem Minerals, 1985,12(3):161175.