汪梦甫+汪帜辉+唐毅
文章编号:16742974(2014)06000907
收稿日期:20130902
基金项目:国家自然科学基金资助项目(50978091,51278181);教育部博士学科点专项科研基金资助项目(20120161110022)
作者简介:汪梦甫(1965-),男,湖北通城人,湖南大学教授,博士生导师
通讯联系人,E-mail:wangmengfu@126.com
摘 要:将选择的746条各国强震记录按照我国建筑抗震设计规范中的规定进行场地分类.按照最新的识别近场强速度脉冲地震记录的定量方法,将选择的地震记录划分为中远地震、近震及近场强脉冲地震记录.利用这些强震记录, 统计得到了近场强脉冲地震对应Ⅰ, Ⅱ, Ⅲ, Ⅳ四类场地的等延性位移比谱、等强度位移比谱的计算公式,并由此研究了场地条件及各种地震动参数对等延性位移比谱、等强度位移比谱的影响.结果表明:近场地震动的脉冲作用在中短周期段[0.3 s,5 s]对等延性位移比谱的影响较大,近场地震动的脉冲作用在中短周期段[0.5 s,3 s]对等强度位移比谱的影响较大且部分可达80%以上,场地条件对影响周期段的范围有重要影响;峰值地面速度与峰值地面加速度比(PGV/PGA)是影响近场地震动位移比谱最大的参数.
关键词:近场地震动;位移比谱;地震动参数;脉冲强度指数;地震
中图分类号:P315.95 文献标识码:A
Influence of Nearfault Pulsetype Ground Motions
on Inelastic Displacement Ratio Spectra
WANG Mengfu, WANG Zhihui, TANG Yi
(College of Civil Engineering, Hunan Univ, Changsha, Hunan 410082, China)
Abstract:Based on the classified site criterion in current seismic design code of building (GB 50011-2010) and quantitative classification scheme of nearfault ground motions proposed by Baker, the sites of 746 accelerograms from the strongmotion databank of some countries were classified as four site classes, and the 746 accelerograms were classified as farfield, nearfault and nearfault pulsetype ground motion accelerograms. Using the selected accelerograms, the empirical equations of nearfault pulsetype ground motion corresponding to four kinds of sites were presented for the inelastic displacement ratio spectra of constant ductility and constant yielding strength. The effects of site condition and different ground motion parameters on inelastic displacement ratio spectra were also evaluated. It is concluded that the influences of nearfault pulsetype ground motion on displacement ratio spectra of constant ductility and constant yielding strength are significant at periods [0.3 s,5 s] and periods [0.5 s,3 s] respectively, and site condition can control the period ranges of the above significant effect. PGV/PGA can provide the largest influence on displacement ratio spectra for nearfield ground motions.
Key words: nearfault pulsetype ground motions; inelastic displacement response spectra; ground motion parameter; pulse indicator; earthquakes
应用弹性分析结果估计最大非弹性位移的研究已有多年.Veletsos等[1-2]通过对单自由度体系在简单脉冲与3个地震地面运动作用下的弹性与非弹性变形计算,率先得到了在低频区体系最大非弹性变形与最大弹性变形相同的所谓“等位移规则”.Newmark等[3-5]进一步完善了中频区、高频区体系最大非弹性变形与最大弹性变形的关系,建立了较为经典的应用弹性分析结果估计最大非弹性位移的简化方法.由于工程界普遍采用基于力的设计方法,在20世纪70年代后,很少有人研究如何改善应用弹性分析结果估计最大非弹性位移的简化方法.
随着基于位移的结构抗震设计的推广与应用,非弹性位移的计算显得十分重要.由于应用非弹性位移比谱从最大弹性位移估计最大非弹性位移简单、有效,从2000年开始,国内外研究人员对非弹性位移比谱进行了大量研究[6-11],取得了一些实用的重要成果,并已写入一些国家的抗震设计规范[12].
随着地震记录数量的大幅增加,研究人员[13-16]从获得的记录分析发现,近场地震记录的动力脉冲效应显著,对结构震害形成影响较大,虽然几次地震均为中等强度的地震,但对建筑结构和桥梁造成极大破坏.于是,近场地震速度脉冲效应的研究逐步开展起来,速度脉冲对结构抗震设计的重要性逐渐为工程研究者关注.为了在结构抗震设计中考虑近场强脉冲影响,Baez等[17]比较了82条近场地震记录(断层距R≤15 km,震级M≥5.6,原始记录PGA≥0.2 g ,PGV≥20 cm/s)与218条远场地震记录的等延性非弹性位移比谱(自振周期0.0~3.0 s),结果表明:近场地震动的脉冲作用在0.1~1.3 s的周期段对等延性非弹性位移比谱的影响最大,在此周期段,等延性非弹性位移比谱增大了近22%左右;通过研究不同地震动参数对近场位移比谱的影响发现,峰值地面速度与最大增量地面加速度对近场地震动非弹性位移比谱有重要影响.翟长海等[18-19]比较了137条近场地震记录(断层距R≤20 km,震级M≥5.6,原始记录速度时程中含有明显的脉冲)与476条远场地震记录的等延性非弹性位移比谱(自振周期0.0~6.0 s),得到了近场地震动的脉冲作用在0.2~1.5 s的周期段对非弹性位移比谱的影响最大的结果,这与Baez等人的研究结论几乎相同.王京哲等[20]对3条Chichi地震的脉冲型近场地震记录和1条Imperial Valley地震的一般记录的响应特点作了简单分析,得到的近场地震速度脉冲下的反应谱加速度敏感区明显较宽.上述研究存在的主要问题在于缺乏判断脉冲的定量指标,似乎近场地震动就是近场强速度脉冲地震动,由此导致研究结论出现较大差异,在一定程度上阻碍了在概率地震危险性分析与工程建筑规范中考虑近场强脉冲影响.
近年来,美国斯坦福大学的Baker[21]将小波分析与EMD分解相结合,提出在近场地震动中识别近场强速度脉冲地震记录的脉冲强度指数(Is),这种识别近场强速度脉冲地震记录的定量方法客观,已开始在研究中得到应用.Chioccarelli等[22]利用美国NGA(Next Generation Attenuation)地震记录库的地震记录,按照Baker[21]的识别近场强速度脉冲地震记录的定量方法进行分类,计算得到了近场脉冲型地震作用时等强度非弹性位移比谱的一些特征,并应用LAquila地震记录进行了映证.
RuizGarcìa[23]进一步完善了Chioccarelli等[22]的工作,得到了近场脉冲型地震作用时非弹性位移比谱与强度折减系数、周期比(T/Tg)(T,Tg分别代表结构自振周期、地震动卓越周期)的统计公式.Iervolino等[24]改进了RuizGarcìa[23]的工作,得到了近场脉冲型地震作用时非弹性位移比谱与强度折减系数、周期比(T/Tp)(T,Tp分别代表结构自振周期、脉冲周期)的统计公式.
为了推动在抗震设计中考虑近场强脉冲影响,为在我国实施基于位移的结构抗震设计提供知识储备,本文将选择的746条各国强震记录按照我国建筑抗震设计规范(GB 50011—2010)中的规定[25]进行场地分类.按照最新的识别近场强速度脉冲地震记录的定量方法,将选择的地震记录划分为中远地震、近震及近场强脉冲地震记录.利用这些强震记录,统计得到了近场强脉冲地震对应Ⅰ, Ⅱ, Ⅲ, Ⅳ四类场地,阻尼比为5%,自振周期从0.05 s到6.0 s的等延性位移比谱、等强度位移比谱的计算公式.通过与远震、近场脉冲地震相应等延性位移比谱、等强度位移比谱的比较,重点探讨了近场强脉冲作用对非弹性位移比谱的影响.
1 地震记录的选取
1.1 场地类别
不同国家的抗震规范对场地类别给出了不同的分类标准.美国USGS的分类标准是根据场地30 m深度范围以内的平均剪切波速的大小将场地划分为A, B, C, D, E, F六类.我国现行的建筑抗震设计规范(GB 50011—2010)根据土层等效剪切波速和场地覆盖层厚度将场地类别分为Ⅰ,Ⅱ,Ⅲ,Ⅳ四类.为了推动在抗震设计中考虑近场强脉冲影响,为在我国实施基于位移的结构抗震设计提供知识储备,本文将所选的746条强震记录按我国设计规范分类.
1.2 中远地震、近震及近场强脉冲地震
本文首先利用已有的50条地震波和从美国Berkeley大学地震工程研究中心网站上下载的272条地震波加速度记录(共计322条);再选用近断层速度脉冲424条和强脉冲156条.其中近断层速度脉冲满足断层距R≤60 km,震级M≥4.5,原始记录PGA≥0.1 g ,PGV≥5.0 cm/s,PGD≥0.5 cm,记录时间≥10 s;并采用Baker[21]的分析程序进行脉冲分类,要求脉冲强度指数0.5≤Is≤1.0;对于强脉冲:断层距≤30 km ,M≥5.5级,PGA≥0.1 g,PGV≥30 cm/s,脉冲强度指数0.85≤Is≤1.0.在计算中,各地震波记录峰值加速度调整为0.4 g.
2 结构计算中的相关参数与概念
2.1 结构参数的选取
影响结构动力特性的主要结构参数一般有:恢复力特性(模型)、结构周期及阻尼.
鉴于双线性恢复力模型具有形式简单、计算方便但同时又能反映结构弹塑性滞回本质的特点,本文在计算非弹性位移比谱时,假定结构的恢复力特性为双线性恢复力模型, 双折线恢复力模型的第二刚度取为0.02倍初始刚度.在计算非弹性位移比谱时,单自由度系统的自振周期从0.08~6 s均等取值;结构的阻尼比取为0.05.
2.2 几个相关概念
延性系数(μ)反映的是结构在弹塑性阶段的变形能力,其具体定义为结构的最大弹塑性位移(xpmax)与结构的屈服位移(xy)之间的比值,即
μ=xpmax xy.(1)
屈服强度系数(ξy)的定义有很多种,本文采取的定义是ξy为结构的屈服强度(Fy)与结构保持完全弹性所需要的最低强度(Fe)之间的比值,即
ξy=FyFe.(2)
表示非弹性结构在地震动作用下最大相对位移反应xpmax与相应弹性结构(具有相同初始周期)在同一地震作用下的最大相对位移反应xemax的比随结构周期(T)变化的曲线称为非弹性位移比谱,即
Cμ或CR=SDpSDe=xpmax xemax .(3)
等延性位移比谱(Cμ)是指结构在各周期时的延性系数都相同,计算结构在该指定延性系数下的位移比谱;等强度位移比谱(CR )是指结构在各周期时的屈服强度都相同,计算结构在该指定屈服强度下的位移比谱.
本文取延性系数μ=2, 3, 4, 5, 6和8等6种延性计算等延性位移比谱;取ξy=0.5, 0.333, 0.25, 0.2, 0.167五种情况计算等强度位移比谱.
3 近断层强脉冲下等延性位移比谱
本文对近断层强脉冲下的等延性位移比谱进行拟合.拟合式如下:
Cμ=(aTb)-c+d. (4)
参数a, b, c, d采用三次多项式拟合,与延性μ有关,即:P(μ)=a1μ3+a2μ2+a3μ+a4.参数取值见表1.
表1 等延性位移比谱拟合公式中的参数
Tab.1 The regression coefficients in equation (4)
场地类别
参数
参数
a 1
a 2
a 3
a 4
Ⅰ类场地
a
0.931 4
-14.324 0
64.121 0
-68.557 0
b
0.066 4
-0.988 3
4.363 4
-4.655 0
c
-0.194 6
2.787 0
-11.601 0
15.120 0
d
-0.001 1
0.012 8
-0.033 6
0.973 8
Ⅱ类场地
a
-0.076 2
1.033 9
-4.115 9
6.843 3
b
-0.037 0
0.494 6
-1.852 6
2.238 1
c
0.143 8
-1.775 3
6.215 0
-3.723 7
d
0.001 5
-0.030 1
0.147 9
0.693 8
Ⅲ类场地
a
0.013 1
-0.107 4
-0.023 4
2.307 2
b
0.057 3
-0.687 5
2.509 0
-2.525 0
c
-0.083 9
0.982 1
-3.234 8
6.204 7
d
0.001 6
-0.029 2
0.116 8
0.745 3
Ⅳ类场地
a
0.571 6
-9.154 5
43.496 0
-53.811 0
b
0.109 1
-1.767 9
8.539 0
-10.838 0
c
-0.287 9
5.175 6
-29.158 0
52.512 0
d
0.001 8
-0.027 8
0.068 9
0.792 3
4 近断层强脉冲下等强度位移比谱
本文对近断层强脉冲下的等强度位移比谱进行拟合.拟合式如下:
CR=(aTb)-c+1. (5)
参数a, b, c与ξy有关,用式:P(ξy)=a1ln(ξy)+a2ξy+a3ξy3+a4ξy/ln(ξy)拟合.拟合参数取值见表2.
表2 等强度位移比谱拟合公式中的系数
Tab.2 The regression coefficients in equation (5)
场地类别
参数
参数
a 1
a 2
a 3
a 4
Ⅰ类场地
Ⅱ类场地
Ⅲ类场地
Ⅳ类场地
a
b
c
a
b
c
a
b
c
a
b
c
9.930
2.241
-9.934
0.782 4
0.986
-24.908
-1.524 4
-1.683
-67.53
0.078 2
0.722 5
-12.936
799.346
163.416
-406.418
102.117
88.913
-1 901.977
-88.841
-144.94
-6966.586
35.487
56.362
-427.504
5 583.784
1 120.601
-2735.44
734.746
632.977
-13 888.96
-635.851
-1 034.84
-51187.76
235.282
389.028
-2 787.18
1 507.64
304.612
-749.45
193.105
169.398
-3 704.812
-172.328
-278.53
-13 643.56
63.309
105.419
-772.546
5 近场脉冲型地震对等延性位移比谱的影响
由图1~图4可以看到近场强脉冲下的谱值>近场>远场,在短周期段和大于5 s后影响不是很大,且随着延性的增大而增大.近场脉冲作用下峰值
T/s(a) 近场、远场位移比谱的比较
T/s (b) 近场强脉冲、远场位移比谱的比较
图1Ⅰ类场地不同地震动位移比谱的比较
Fig.1Comparison of different displacement ratio
spectrum of constant ductility for site condition Ⅰ
点和影响范围随着场地特征周期的增大而增大;Ⅰ类场地、Ⅱ类场地在0.32~3.5 s,Ⅲ类场地在0.4~4 s,Ⅳ类场地在0.5~5 s周期段对位移比谱产生较大影响;影响大部分在20%以下.近场强脉冲作用下μ≥4比值为20%,μ≥6后高达30%以上.
近场地震动普遍拥有较高的PGV/PGA值,也就是有较宽的加速度敏感区,因此较高的PGV/PGA值可能会对结构的非弹性位移比谱产生较大的影响.所以本文将所有地震动按PGV/PGA值分为了2组,大于等于0.2的地震动为第一组,小于0.2的地震动作为第二组,以此来考察PGV/PGA影响的大小.为考察PGV的影响,按PGV≥50 cm/s和PGV<50 cm/s分成2组.
T/s(a) 近场、远场位移比谱的比较
T/s (b) 近场强脉冲、远场位移比谱的比较
图2Ⅱ类场地不同地震动位移比谱的比较
Fig.2 Comparison of different displacement ratiospectrum
of constant ductility for site conditionⅡ
T/s(a) 近场、远场位移比谱的比较
T/s (b) 近场强脉冲、远场位移比谱的比较
图3 Ⅲ类场地不同地震动位移比谱的比较
Fig.3 Comparison of different displacement ratio
spectrum of constant ductility for site condition Ⅲ
T/s(a) 近场、远场位移比谱的比较
T/s (b) 近场强脉冲、远场位移比谱的比较
图4 Ⅳ类场地不同地震动位移比谱的比较
Fig.4 Comparison of different displacement ratio
spectrum of constant ductility for site condition Ⅳ
由图5可知,PGV/PGA≥0.2的位移比谱在0~4.5 s范围内均高于PGV/PGA<0.2的位移比谱,其影响随着延性的增大而增大,μ≥6后在1~3 s范围内高达40%以上,部分达到60%以上,可见PGV/PGA值对近场地震动位移比谱的影响很大.PGV的影响相对要小,PGV≥50 cm/s的值在0~4.0 s范围内均高于PGV<50 cm/s的值,μ<6时影响在10%左右,只在短周期内达到10%以上,对长周期影响不大;μ≥6后影响才达到20%左右,且只在小于1 s的范围内.
T/s(a)PGV/PGA值对位移比谱的影响
T/s(b) PGV值对位移比谱的影响
图5 PGV/PGA值及PGV值的影响
Fig.5 Effect of PGV/PGA and PGV
on displacement ratio of constant ductility
6 近场脉冲型地震对等强度位移比谱的影响
由图6可以直观地看出:近场强脉冲作用下的等强度位移比谱在中短周期段内要高一些,近场强脉冲的影响随着ξy的减小而增大,部分可达80%以上;影响范围随着四类场地而增大,Ⅳ类场地可达整个周期段;峰值点所对应的周期点和平台段随着场地特征周期的增大而增大.
由图7可以看到PGV/PGA值的影响很大,随着ξy的减小而增大,最高达150%左右,影响范围也很广,大约为0~5 s.PGV的影响相对要小一些,影响范围只有0~1.8 s;随着ξy的减小稍有增大,当ξy<0.333后,影响基本一致.
T/s(a) Ⅰ类场地
T/s(b) Ⅱ类场地
T/s (c) Ⅲ类场地
T/s (d) Ⅳ类场地
图6 不同场地地震动位移比谱的比较
Fig.6Comparison of different displacement ratio
spectrum of constant yielding strength for site condition
T/s(a)PGV/PGA值对位移比谱的影响
T/s(b) PGV值对位移比谱的影响
图7 PGV/PGA值及PGV值的影响的比较
Fig.7Effect of PGV/PGA and PGV
on displacement ratio of constant yielding strength
7 结 论
1) 本文将选择的746条各国强震记录按照我国建筑抗震设计规范中的规定进行场地分类.按照最新的识别近场强速度脉冲地震记录的定量方法,将选择的地震记录划分为中远地震、近震及近场强脉冲地震记录.利用这些强震记录,统计得到了近场强脉冲地震对应Ⅰ, Ⅱ, Ⅲ, Ⅳ四类场地,阻尼比为5%,自振周期从0.05 s到6.0 s的等延性位移比谱、等强度位移比谱的计算公式.
2) 近场脉冲作用下等延性位移比谱峰值点和影响范围随着场地特征周期的增大而增大;Ⅰ类场地、Ⅱ类场地在0.32~3.5 s,Ⅲ类场地在0.4~4 s,Ⅳ类场地在0.5~5 s周期段对等延性位移比谱产生较大影响;影响大部分在20%以下.近场强脉冲作用下μ≥4比值为20%,μ≥6后高达30%以上.
3) 近场强脉冲作用下的等强度位移比谱在中短周期段内要高一些,近场强脉冲的影响随着ξy的减小而增大,部分可达80%以上;影响范围随着四类场地而增大,Ⅳ类场地可达整个周期段;峰值点所对应的周期点和平台段随着场地特征周期的增大而增大.
4) PGV/PGA≥0.2的等延性位移比谱在0~4.5 s范围内均高于PGV/PGA<0.2的位移比谱,其影响随着延性的增大而增大,μ≥6后在1~3 s范围内高达40%以上,部分达到60%以上.PGV≥50 cm/s的等延性位移比谱值在0~4.0 s范围内均高
于PGV<50 cm/s的值,μ<6时影响在10%左右,只在短周期内达到10%以上,对长周期影响不大;μ≥6后影响才达到20%左右,且只在小于1 s的范围内.
5) PGV/PGA值对等强度位移比谱的影响随着ξy的减小而增大,最高达150%左右,影响范围也很广,大约为0~5 s.PGV的影响相对要小一些,影响范围只有0~1.8 s;随着ξy的减小稍有增大,当ξy<0.333后,影响基本一致.
参考文献
[1] VELETSOS A S, NEWMARK N M. Effect of inelastic behavior on the response of simple systems to earthquake motions[C]// Proceedings of the 2th World Conference on Earthquake Engineering. Tokyo and Kyoto, Japan, 1960: 895-912.
[2] VELETSOS A S, NEWMARK N M, CHEPALATI C V. Deformation spectra for elastic and elastoplastic systems subjected to ground shock and earthquake motion[C]//Proceedings of the 3th WCEE. New Zealand, 1965: 663-682.
[3] NEWMARK N M, HALL W J. Procedures and criteria for earthquake resistant design[R]. Building Research Series No. 46. Washington, DC: National Bureau of Standards, Dept of Commerce, 1973:209-236.
[4] NEMARK N M, RIDDELL R A. Statistical study of inelastic response spectra[C]//Proceedings of 2nd US National Conference on Earthquake Engineering. Stanford, US, 1979: 6-12.
[5] NEMARK N M, HALL W J. Earthquake spectra and design [M]. Berkeley, California: EERI ,1982.
[6] MIRANDA E. Inelastic displacement ratios for structures on firm sites [J]. Journal of Structural Engineering, 2000, 126(10):1150-1159.
[7] RUIZGARCA J, MIRANDA E. Inelastic displacement ratios for evaluation of existing structures [J]. Earthquake Engineering and Structural Dynamics, 2003, 32(8):1237-1258.
[8] RUIZGARCA J, MIRANDA E. Inelastic displacement ratios for evaluation of structures built on soft soil sites [J]. Earthquake Engineering and Structural Dynamics, 2006,35(6):679-694.
[9] 肖明葵.抗震结构的弹塑性位移谱[J]. 重庆建筑大学学报,2000, 22(S1): 34-40.
XIAO Mingkui. The response spectrum of elastoplastic displacement for seismic structures [J]. Journal of Chongqing Jianzhu University,2000, 22(S1):34-40. (In Chinese)
[10]肖明葵,白绍良.抗震结构的弹塑性位移谱[J].重庆大学学报,2002, 25(7): 99-103.
XIAO Mingkui, BAI Shaoliang. The response spectrum of elastoplastic displacement for seismic structures [J].Journal of Chongqing University, 2002,25(7):99-103. (In Chinese)
[11]吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱[J].地震工程与工程振动,2004, 24(1): 39-48.
LV Xilin, ZHOU Dingsong. Ductility demand spectra and inelastic displacement spectra considering soil conditions and design characteristic periods [J]. Earthquake Engineering and Engineering Vibration, 2004, 24(1): 39-48. (In Chinese)
[12]Federal Emergency Management Agency. Improvement of nonlinear static seismic analysis procedures[R]. Report FEMA 440. Washington, DC: Federal Emergency Management Agency, 2005.
[13]ANDERSON J C, BERTERO V V. Uncertainties in establishing design earthquake [J]. Journal of Structural Engineering,1987,113(8):1709-1724.
[14]IWAN W D,HUANGH C T, GUYADER A C. Important features of the response of inelastic structures to nearfield ground motion[C]// Proceedings of the 12th World Conference on Earthquake Engineering. Auckland, New Zealand, 2000:Paper, No.1740.
[15]ALAVI B,KRAWINKLER H. Consideration of nearfault ground motion effects in seismic design[C]//Proceedings of the 12th World Conference on Earthquake Engineering. Auckland,New Zealand, 2000, Paper No.2665.
[16]MENUN C,FU Q. An analytical model for near fault ground motions and the response of SDOF systems[C]//Proceedings of the 7th U S National Conference on Earthquake Engineering. Oakland, California, 2002:1-10.
[17]BAEZ J I, MIRANDA E. Amplification factors to estimate inelastic displacement demands for the design of structures in the near field[C]// Proceeding of the 12th World Conference on Earthquake Engineering. Auckland,New Zealand, 2000: Paper No.1561.
[18]ZHAI Changhai,LI Shuang,XIE Lili. Study on inelastic displacement ratio spectra for nearfault pulsetype ground motions [J]. Earthquake Engineering and Engineering Vibration, 2007, 6(4): 351-355.
[19]翟长海,李爽,谢礼立, 等.近场脉冲型地震动位移比谱特征研究[J].土木工程学报,2008, 41(10): 1-5.
ZHAI Changhai,LI Shuang,XIE Lili, et al. Characteristics of displacement ratio spectra for nearfield ground motions [J]. China Civil Engineering Journal, 2008, 41(10): 1-5. (In Chinese).
[20]王京哲,朱晞. 近场地震速度脉冲下的反应谱加速度敏感区[J]. 中国铁道科学, 2003, 24(6):27-30.
WANG Jingzhe, ZHU Xi. Accelerationsensitive region under pulselike nearfield ground motions [J]. China Railway Science, 2003, 24(6): 27-30. (In Chinese)
[21]BAKER J W. Quantitative classification of nearfault ground motions using wavelet analysis [J]. Bulletin of the Seismological Society of America, 2007,97(5):1486-1501.
[22]CHIOCCARELLI E, IERVOLINO I. Nearsource seismic demand and pulselike records: a discussion for LAquila earthquake [J]. Earthquake Engineering and Structural Dynamics ,2010, 39(9):1039-1062.
[23]RUIZGARCA J. Inelastic displacement ratios for seismic assessment of structures subjected to forwarddirectivity near fault ground motions [J]. Journal of Earthquake Engineering,2011, 15(3):449-468.
[24]IERVOLINO I, CHIOCCARELLI E E .Inelastic displacement ratio of nearsource pulselike ground motions [J]. Earthquake Engineering and Structural Dynamics ,2012, 41(15): 2351-2357.
[25]GB 50011—2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010:18-28.
GB 50011—2010 Seismic design code of buildings[S]. Beijing: China Architecture & Building Press,2010:18-28. (In Chinese)
[10]肖明葵,白绍良.抗震结构的弹塑性位移谱[J].重庆大学学报,2002, 25(7): 99-103.
XIAO Mingkui, BAI Shaoliang. The response spectrum of elastoplastic displacement for seismic structures [J].Journal of Chongqing University, 2002,25(7):99-103. (In Chinese)
[11]吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱[J].地震工程与工程振动,2004, 24(1): 39-48.
LV Xilin, ZHOU Dingsong. Ductility demand spectra and inelastic displacement spectra considering soil conditions and design characteristic periods [J]. Earthquake Engineering and Engineering Vibration, 2004, 24(1): 39-48. (In Chinese)
[12]Federal Emergency Management Agency. Improvement of nonlinear static seismic analysis procedures[R]. Report FEMA 440. Washington, DC: Federal Emergency Management Agency, 2005.
[13]ANDERSON J C, BERTERO V V. Uncertainties in establishing design earthquake [J]. Journal of Structural Engineering,1987,113(8):1709-1724.
[14]IWAN W D,HUANGH C T, GUYADER A C. Important features of the response of inelastic structures to nearfield ground motion[C]// Proceedings of the 12th World Conference on Earthquake Engineering. Auckland, New Zealand, 2000:Paper, No.1740.
[15]ALAVI B,KRAWINKLER H. Consideration of nearfault ground motion effects in seismic design[C]//Proceedings of the 12th World Conference on Earthquake Engineering. Auckland,New Zealand, 2000, Paper No.2665.
[16]MENUN C,FU Q. An analytical model for near fault ground motions and the response of SDOF systems[C]//Proceedings of the 7th U S National Conference on Earthquake Engineering. Oakland, California, 2002:1-10.
[17]BAEZ J I, MIRANDA E. Amplification factors to estimate inelastic displacement demands for the design of structures in the near field[C]// Proceeding of the 12th World Conference on Earthquake Engineering. Auckland,New Zealand, 2000: Paper No.1561.
[18]ZHAI Changhai,LI Shuang,XIE Lili. Study on inelastic displacement ratio spectra for nearfault pulsetype ground motions [J]. Earthquake Engineering and Engineering Vibration, 2007, 6(4): 351-355.
[19]翟长海,李爽,谢礼立, 等.近场脉冲型地震动位移比谱特征研究[J].土木工程学报,2008, 41(10): 1-5.
ZHAI Changhai,LI Shuang,XIE Lili, et al. Characteristics of displacement ratio spectra for nearfield ground motions [J]. China Civil Engineering Journal, 2008, 41(10): 1-5. (In Chinese).
[20]王京哲,朱晞. 近场地震速度脉冲下的反应谱加速度敏感区[J]. 中国铁道科学, 2003, 24(6):27-30.
WANG Jingzhe, ZHU Xi. Accelerationsensitive region under pulselike nearfield ground motions [J]. China Railway Science, 2003, 24(6): 27-30. (In Chinese)
[21]BAKER J W. Quantitative classification of nearfault ground motions using wavelet analysis [J]. Bulletin of the Seismological Society of America, 2007,97(5):1486-1501.
[22]CHIOCCARELLI E, IERVOLINO I. Nearsource seismic demand and pulselike records: a discussion for LAquila earthquake [J]. Earthquake Engineering and Structural Dynamics ,2010, 39(9):1039-1062.
[23]RUIZGARCA J. Inelastic displacement ratios for seismic assessment of structures subjected to forwarddirectivity near fault ground motions [J]. Journal of Earthquake Engineering,2011, 15(3):449-468.
[24]IERVOLINO I, CHIOCCARELLI E E .Inelastic displacement ratio of nearsource pulselike ground motions [J]. Earthquake Engineering and Structural Dynamics ,2012, 41(15): 2351-2357.
[25]GB 50011—2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010:18-28.
GB 50011—2010 Seismic design code of buildings[S]. Beijing: China Architecture & Building Press,2010:18-28. (In Chinese)
[10]肖明葵,白绍良.抗震结构的弹塑性位移谱[J].重庆大学学报,2002, 25(7): 99-103.
XIAO Mingkui, BAI Shaoliang. The response spectrum of elastoplastic displacement for seismic structures [J].Journal of Chongqing University, 2002,25(7):99-103. (In Chinese)
[11]吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱[J].地震工程与工程振动,2004, 24(1): 39-48.
LV Xilin, ZHOU Dingsong. Ductility demand spectra and inelastic displacement spectra considering soil conditions and design characteristic periods [J]. Earthquake Engineering and Engineering Vibration, 2004, 24(1): 39-48. (In Chinese)
[12]Federal Emergency Management Agency. Improvement of nonlinear static seismic analysis procedures[R]. Report FEMA 440. Washington, DC: Federal Emergency Management Agency, 2005.
[13]ANDERSON J C, BERTERO V V. Uncertainties in establishing design earthquake [J]. Journal of Structural Engineering,1987,113(8):1709-1724.
[14]IWAN W D,HUANGH C T, GUYADER A C. Important features of the response of inelastic structures to nearfield ground motion[C]// Proceedings of the 12th World Conference on Earthquake Engineering. Auckland, New Zealand, 2000:Paper, No.1740.
[15]ALAVI B,KRAWINKLER H. Consideration of nearfault ground motion effects in seismic design[C]//Proceedings of the 12th World Conference on Earthquake Engineering. Auckland,New Zealand, 2000, Paper No.2665.
[16]MENUN C,FU Q. An analytical model for near fault ground motions and the response of SDOF systems[C]//Proceedings of the 7th U S National Conference on Earthquake Engineering. Oakland, California, 2002:1-10.
[17]BAEZ J I, MIRANDA E. Amplification factors to estimate inelastic displacement demands for the design of structures in the near field[C]// Proceeding of the 12th World Conference on Earthquake Engineering. Auckland,New Zealand, 2000: Paper No.1561.
[18]ZHAI Changhai,LI Shuang,XIE Lili. Study on inelastic displacement ratio spectra for nearfault pulsetype ground motions [J]. Earthquake Engineering and Engineering Vibration, 2007, 6(4): 351-355.
[19]翟长海,李爽,谢礼立, 等.近场脉冲型地震动位移比谱特征研究[J].土木工程学报,2008, 41(10): 1-5.
ZHAI Changhai,LI Shuang,XIE Lili, et al. Characteristics of displacement ratio spectra for nearfield ground motions [J]. China Civil Engineering Journal, 2008, 41(10): 1-5. (In Chinese).
[20]王京哲,朱晞. 近场地震速度脉冲下的反应谱加速度敏感区[J]. 中国铁道科学, 2003, 24(6):27-30.
WANG Jingzhe, ZHU Xi. Accelerationsensitive region under pulselike nearfield ground motions [J]. China Railway Science, 2003, 24(6): 27-30. (In Chinese)
[21]BAKER J W. Quantitative classification of nearfault ground motions using wavelet analysis [J]. Bulletin of the Seismological Society of America, 2007,97(5):1486-1501.
[22]CHIOCCARELLI E, IERVOLINO I. Nearsource seismic demand and pulselike records: a discussion for LAquila earthquake [J]. Earthquake Engineering and Structural Dynamics ,2010, 39(9):1039-1062.
[23]RUIZGARCA J. Inelastic displacement ratios for seismic assessment of structures subjected to forwarddirectivity near fault ground motions [J]. Journal of Earthquake Engineering,2011, 15(3):449-468.
[24]IERVOLINO I, CHIOCCARELLI E E .Inelastic displacement ratio of nearsource pulselike ground motions [J]. Earthquake Engineering and Structural Dynamics ,2012, 41(15): 2351-2357.
[25]GB 50011—2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010:18-28.
GB 50011—2010 Seismic design code of buildings[S]. Beijing: China Architecture & Building Press,2010:18-28. (In Chinese)