任务驱动探究式教学模式在数据挖掘课程中的应用研究

2014-09-10 12:26黄剑
电脑知识与技术 2014年6期
关键词:探究式任务驱动课程改革

黄剑

摘要:任务驱动探究式教学模式是一种以学生为主体,教师为主导的教学活动方式,符合数据挖掘课程教学特点。能够利用任务引导学生进行探究式的学习,并且促使老师在教学过程中不断的提高。该文结合数据挖掘课程的教学改革实践,总结了案例驱动探究式教学模式在课程改革中的一般流程和具体改革内容。实践证明,此教学模式能够很好的提高本科的实践类课程的教学质量。

关键词:任务驱动;探究式;课程改革

中图分类号:G642 文献标识码:A 文章编号:1009-3044(2014)06-1253-03

Applied Research of Task-driven Inquiry Teaching Model in Data Mining Course

HUANG Jian

(Zhejiang Wanli University, Department of Computer Science and Information Technology, Ningbo 315100, China)

Abstract: The task-driven inquiry teaching model is a teaching activities which students as the main body, teachers as the leading. It fits the data-mining course. Not only using task lead the student to inquiry learning, but also improve teachers during the teaching process. Based on the data mining course teaching reform practice, summarizes the task-driven inquiry teaching mode in general process and the specific content of the reform. Practice has proved, this teaching mode is good for improving undergraduate courses teaching quality.

Key words: Task-driven; Inquiry; Curriculum reform

数据挖掘是一门包括了数据库系统、专家系统、机器学习、统计学、模式识别、信息检索、人工智能等学科的综合性的学科,其目标是发现隐藏在大型数据集中的知识模式。此课程一般是在研究生教育阶段开设[1],但随着社会对应用型人才的需求越来越大,这就要求我们的学生毕业后不仅要有扎实的理论基础,更要有较强的创新能力和实践能力。

我校针对信息与计算科学及统计学两个专业开设了数据挖掘课程。该专业学生拥有较强的数学理论基础,并掌握了数学建模、统计学、数据库等相关学科。数据挖掘作为一门综合性课程,是融合学生各科知识,提高该专业学生应用实践能力,培养学生团队协作能力的很好的载体课程。

1 数据挖掘课程教学特点

数据挖掘技术是一个多学科交叉的综合研究领域。不过也正因为它涉及的范围很广泛,发展的时间也不是很长,因此要真正理解数据挖掘的本质并不是一件容易的事情。我校针对信息与计算科学和统计学两个理学专业开设此课程,并将此课程归类为实践类课程。经过笔者多年对传统教学方法的研究和改革,发现了在数据挖掘教学中存在的问题:

1) 理论教学困难:数据挖掘课程内容涉及领域广泛,如统计学、数据库、机器学习、模式识别等内容,并且所涉及的算法繁多。由于本科生的知识体系不健全,理论基础相对薄弱,造成了学习难度过大。此外,由于学时限制,无法在课堂中详细地讲述算法理论,导致了学生积极性不高,很难达到教学目标。

2) 实践环节无法让学生体会数据挖掘本质:数据挖掘是从数据获取、数据整理、预处理、数据挖掘分析、结果分析等一系列流程的综合。但由于课时关系,我们课程中的实践环节往往是针对某个特定的算法,让学生利用已经预处理好的数据进行算法的应用。数据挖掘成本很高,但是这个成本往往并不是金钱,而是时间,而数据整理和预处理的时间往往占到全部工作量的80%。不经过完整的数据挖掘流程训练,学生就无法体会数据挖掘的本质。

3) 软件应用缺乏:针对海量数据分析是必须要应用到计算机技术处理。当今针对数据挖掘应用的软件很多,如SAS公司的EM模块、SPSS的Modeler、WEKA、Matlab以及各数据库系统配套的OLAP功能等。在课堂中,不可能对任何一款软件都详细的进行讲解。这就使得学生很难进行算法的应用实践。

2 任务驱动探究式教学模式

针对目前教学存在的这些问题,广西大学梁斌梅提出了目标驱动的专业课教学法,利用导入课吸引学生、利用教学目标引导学生[2]。韩秋明等人编著的《数据挖掘技术应用实例》中采用了大量的行业数据,为数据挖掘教学模式的改革提供大量的应用实例[3]。结合本校的学生特点,参考国内的一些研究成果,该文提出了基于任务驱动探究式教学模式。课程整体主线由任务驱动,学生进行探究式自主学习。

任务驱动是基于构建主义教学理论基础上的教学方法,以学生为主体,以老师为主导的一整套教学新模式。而探究式教学是与直接接受式教学相对的,在任务驱动的同时,激发学生的好奇心,并驱使学生投入到知识获取的自主学习活动中。任务驱动探究式教学模式是将两者有机的结合起来,使学生能够明确学习目标、提高学习兴趣、提升学习动力,发挥学生的自主学习能力、创造能力,培养学生分析问题、解决问题的能力。通过自主学习,自行的完成阶段性的教学任务,以达到相应的教学目标。任务驱动探究式教学模式,适合操作性和应用性强的课程。任务驱动探究式教学模式的核心思想是在教学方面强调任务驱动,在学习方面则强调探究式学习。因此必须合理地设计课程教学方案,在“教”和“学”两个方面进行设计。老师必须在任务设计、实施进程管理、信息反馈等各方面做好衔接,保证学生能够时刻跟上任务进度,并保持足够的兴趣度。

3 基于案例驱动探究式教学模式的数据挖掘课程改革

任务驱动探究式教学模式是以学生为主体,教师主导的新型教学模式。教师的作用在于教学组织和任务布置的安排调度。利用任务引导学生学习相关知识,提高学生的学习主动性。因此,如何根据课程需要合理地进行课程任务设计,安排任务进度都是课程改革成功的关键。

3.1 课程内容重新整合

数据挖掘是一个由数据收集、数据预处理、数据分析挖掘、结论分析等各个步骤组成的整体过程。在现有的数据挖掘书中,针对数据收集、数据预处理部分往往比较简化,大部分篇幅都在讲述数据挖掘算法,如分类算法、关联算法、聚类算法。如果在课程内容设计时,仅仅对算法做重点讲述而忽略前期步骤,将会造成学生内容知识的脱节,无法体会数据挖掘整个流程,从而不能真正地理解数据挖掘思想本质。因此,本课程教学目标应该是重点培养学生分析问题、解决问题和团队协作能力,树立数据挖掘思维体系,了解数据挖掘基本算法,能够应用数据挖掘软件解决实际问题并得到结果。

根据这个教学目标对课程内容进行适当调整。首先,增加绪论内容并设置导入课。在导入课中增加生活中学生感兴趣的数据挖掘故事,经典案例以及各行业中的应用,从而提高学生学习的兴趣。其次,适当增加数据获取、数据预处理以及数据挖掘软件的介绍,使得学生能够明确数据怎么来、如何处理以及用什么工具处理等问题。最后,有选择地介绍基本的数据挖掘算法,所介绍的算法应该是常见、易懂并且能够很容易使用软件实现的,如决策树算法、K均值聚类算法、Apriori算法、朴素贝叶斯算法等。而针对比较难的算法,可以仅做介绍,让学生在今后遇到此类问题能够自主的进行学习。通过内容的调整,一方面使得学生不会因为数据挖掘算法繁多且复杂而惧怕,保证学生的学习兴趣,从而很好的引导其自主学习,提高教学效果。另一方面,数据挖掘算法在不断的改进,不可能在课程中覆盖所有。通过基本算法和工具的结合,能够很好地帮助学生从算法理论转变成算法实现,从而真正的进行数据挖掘工作。即使出现了新的算法,也能够举一反三,进行软件实现。

3.2 组织方式的改变

任务驱动探究式教学模式必须以课程任务为依托。改变以往以纯理论的教学方式,加入实践和课堂讨论环节,将理论知识讲解和课程任务有机地结合到一起。考虑到数据挖掘连贯性以及工程庞大性,可以考虑以项目化的方式进行。将学生6个人左右分为一组,自主的在老师所提供的数据共享平台中寻找感兴趣的问题进行分析研究。将整个项目分解成为数据搜集、数据预处理、探索性分析、数据挖掘、结果分析等一系列的小任务,安排阶段性的任务目标,层序渐进,逐步的建立学生完成项目的信心并最终完成整个项目。

学生是项目的负责人,在接受一个短期任务后,就要自主的开始进行任务的执行。老师仅仅在课堂中进行了基本知识的讲解,学生要完成任务就必须学习更多的课外知识。项目的研究内容是自己选择的,而且完成阶段性的任务并不是那么的遥不可及,所以学生有足够的兴趣和信心去完成。通过查阅资料、学习知识、任务分配、安排和组织实施等,完成教学任务的同时也锻炼了他们团队合作意识、沟通能力、自主学习能力。这些能力的培养才能使他们在知识不断更新的当今,紧密地跟紧前沿技术并更好的去解决实际问题。

3.3 任务进度控制和评价

课程的课堂教学时间是有限的,老师不可能在课堂中既完成理论教学,又给足时间让学生进行课程任务,所以项目的实施必须是在课后进行。学生要在课外进行大量的参考资料阅读、相互讨论及数据分析的工作。那么老师作为主导者,必须及时地了解学生阶段性任务的完成情况,对当前学生遇到的困难及时给出建议和意见,甚至在学生遇到真正的难题给予技术上的支持。所以本课程在理论课教学的同时,也开展了定期的讨论课,让学生定期汇报阶段性任务的完成情况,及时进行任务进度的控制。整个项目的实施流程和任务分解如图1。根据流程安排,理论引导学生任务的进行。通过学生任务的完成情况,老师在完成基本理论教学的同时,有针对性的对学生所遇到的问题进行讲解,最终目标是引导学生完成整个教学项目。一方面,学生自主学习能力提高,有足够的兴趣和能力去完成每个阶段的任务,并且会更加认真的在理论课中寻找自己想得到的知识。另一方面,由于学生自主寻找的项目多样性,选择的算法不可控性,同样促使老师不断的提高自身,教学内容不再一成不变,而是随时的更新。

图1 任务进度安排流程图

良好的进度控制需要一个完善的评价体系做辅助。只有做好每个阶段性的评价,引入一定的竞争机制,才能提高学生积极性和自信心。首先,必须做到极端性任务的目标和时间明确化。要完成什么,在什么时候完成,都必须事先和学生约定。对没有按时完成任务的组,必须做出相应的惩罚,如扣除本阶段的得分。除此之外必须分析原因,搞清为什么无法完成任务,有针对性地提出建议和意见,以便学生能够及时调整。其次,评价标准既要唯一又要区别对待。唯一标准指的是一样的进度,一样的任务,一样的要求。但是数据挖掘项目会根据研究领域不同、使用算法不同、数据质量不同而造成难度差异,一味的同等标准要求会造成选择难度较高项目的学生积极性下降。所以老师必须客观的分析每个项目难度,并区别对待。对于由客观难度造成任务进程落后的组,应当在解决问题后给予奖励。并且,在最终论文评定时,适当的加入一定的难度分,以鼓励学生培养自我挑战的精神。通过教师评价、组长评价、组间评价等评价方式,客观的合理的对整个项目实施作出最终的评价结果。

4 结束语

通过案例驱动探究式教学模式的改革,数据挖掘课程在教学效果上得到了实质性的提高。人才培养上卓有成效,老师也在教学过程中受益良多。通过教学模式的改革,使得原本枯燥、难懂的理论教学变得生动。学生的求知欲望得到了激发,课程的学习目标更加的明确,教学质量也有很大的提高。同时我们发现,学生的自主学习能力、汇报能力、论文撰写能力都有了明显的提高,并且有很多教学项目被用于毕业论文的研究。数据挖掘课程也因此被选为宁波市级的智慧产业核心引导课程。

参考文献:

[1] 胡建军.浅谈数据仓库与数据挖掘的本科教学[J].广西科学院学报,2007(3):29-210.

[2] 梁斌梅,吕跃进.目标驱动的专业课教学法及其在数据挖掘课程中的应用[J].高教论坛,2008(6):93-96.

[3] 韩秋明,李微,李华锋.数据挖掘技术应用实例[M].北京:机械工业出版社,2009:1-30.

猜你喜欢
探究式任务驱动课程改革
关于小学数学探究式教学的研究
浅议小学数学教学中学生学习方式的转变
浅析高中化学教学中探究式教学的实施策略
任务驱动式教学模式在电子技术课程中的应用
“双创”形势下高职财务管理课程改革探索
项目教学法在微电影制作教学中的应用
任务驱动教学法在《网络应用服务管理》教学中的应用
任务驱动, 启发学生自学
任务驱动教学法在中职信息技术教学中的运用
基于创意的对口单招色彩课程改革突破点研究