携带磁性纳米颗粒载药微囊的制备及肿瘤治疗的应用研究进展*

2014-09-10 07:31房坤杨芳顾宁
中国肿瘤临床 2014年1期
关键词:载药微囊脂质体

房坤杨芳顾宁

携带磁性纳米颗粒载药微囊的制备及肿瘤治疗的应用研究进展*

房坤杨芳顾宁

顾宁 教育部“长江学者”特聘教授,国家杰出青年基金获得者,国家重大科学研究计划项目首席科学家。东南大学生物科学与医学工程学院院长、东南大学纳米科学与技术研究中心主任、江苏省生物材料与器件重点实验室主任等。从事分子功能材料薄膜、纳米加工以及纳米材料制备、表征、及其在生物医(药)学领域中的应用研究。完成并正在承担十多项国家级及省部级科研项目,其中在磁性纳米材料、贵金属纳米材料及其生物医学应用基础等方面开展研究,发表SCI论文一百余篇,主要成果发表于Adv.Mater、ACS Nano、Biomaterials、Small、Adv Funct Mater、Cell Res等期刊,获得国家发明专利30余项。获得国家自然科学二等奖1项、省部级科技奖多项。

通过磁场操控使携带磁性纳米颗粒的微囊富集在生物体特定部位,可实现微囊对特定组织或器官的靶向输送。负载抗肿瘤药物的磁性微囊既可以磁靶向到肿瘤组织,又有缓释、控释药物的优点,已成为实现肿瘤靶向治疗的新型药物载体。本文综述了脂质体、聚合物电解质微囊、聚合物微球等药物载体携带磁性纳米颗粒的制备方法,及其用于抗肿瘤药物载体的基础研究进展。

磁性纳米颗粒 磁靶向 磁性微囊 控制释放 热疗联合化疗

随着化疗在肿瘤综合治疗中的重要性提高,药物载体技术也取得了显著发展[1]。尤其随着纳米技术与现代医学和生物学的交叉融合,纳米生物医学取得了长足发展。其中磁性纳米材料由于其独特的性能而备受关注[2],磁靶向药物传递系统是以磁性复合颗粒作为药物载体,进入生物体后,在磁场的作用下,磁性载药微粒富集于病变部位,所负载的药物受控释放,实现靶向治疗[3];此外,磁性纳米颗粒在交变磁场作用下能产生热能[4],还可实现局部热疗。因此,具有靶向药物释放和热疗的多功能磁性微囊已发展成新型的药物载体。本文主要综述了磁性脂质体药物载体、磁性聚合物微球药物载体、磁性聚合物电解质微囊药物载体以及其他磁性药物载体的研究进展。

1 磁性载药微囊的设计原理

1.1 磁性纳米颗粒

磁性纳米颗粒因其固有的磁性及纳米颗粒表面效应,广泛用于磁靶向、影像诊断、药物载体、磁热疗及磁分离等领域。通过表面修饰可提高纳米颗粒的理化稳定性,结合磁性纳米颗粒制备的多功能材料也备受关注。

1.2 载药微囊

载药微囊是将固态或液态药物用脂质或高分子等药物辅料包裹的微囊,在载药量、滞留率等方面有优势。有关微囊药物载体的研究主要集中在载药量和药物释放等方面,如何调控药物释放是载药微囊研究的重要课题。

1.3 磁性载药微囊

磁性载药微囊是具有磁靶向性和磁热疗作用的多功能微囊,磁性纳米颗粒与微囊的结合方式有包裹、掺杂和吸附等方式。

2 磁性微囊的制备和应用

2.1 磁性脂质体药物载体

磁性脂质体是指结合磁性纳米颗粒的载药脂质体,已经制备了内部包裹磁性纳米颗粒和磁性纳米颗粒镶嵌在脂质膜壳内等多种形式的载药脂质体,并通过低、高频交变磁场评价了其药物释放及对肿瘤的疗效。2000年,Babincova等[5]制备了包裹标记Tc-99m的人血清白蛋白和磁性颗粒的磁性脂质体,通过静脉注入小鼠体内,磁铁(0.35T)贴在右肾,发现磁靶向右肾的辐射能(25.92%±5.84%)显著高于非靶向的左肾(0.93%±0.05%)。随后采用逆向蒸发法制备了包裹阿霉素的磁性脂质体,在交变磁场(3.5 MHz)作用下,磁性脂质体(1.2 mg Fe/mL)能在2 min内升温到42℃(交变磁场作用6 min,水溶液只升高2℃),实现了对负载抗癌药物(阿霉素)的可控释放[6]。Bealle等[7]将水溶性氧化铁纳米颗粒(7 nm,9 nm)包裹在脂质体内,所制备的磁性脂质体在交变磁场作用下具有显著的升温效果7 nm(ΔT=14.9±0.5℃),9 nm(ΔT=40.7±0.5℃),能够实现磁热疗,并通过MRI证实了磁性脂质体在静磁场下的磁靶向性。Chen和Amstad等[8-9]将疏水性磁性纳米颗粒镶嵌在磁性脂质体的模壳内,结果表明磁性脂质体在交变磁场下既有升温效果,也有受控荧光释放行为。Nobuto和Mikhaylov等[10-11]制备了包裹阿霉素(DOX)和半胱氨酸蛋白酶抑制剂(JPM-565)的磁性脂质体,通过磁靶向实现在肿瘤部位的富集和增加局部药物浓度,提高了磁性脂质体的疗效。Yoshida等[12]首先利用负载多西紫杉醇的磁性脂质体在交变磁场作用下实现了对肿瘤化疗联合热疗,在交变磁场作用下,治疗组肿瘤表面温度在42~43℃,肿瘤体积明显缩小,动物生存期明显延长。

2.2 磁性聚合物微球药物载体

一般来说,磁性聚合物微球药物载体应具有良好的生物相容性,能在体内降解并且降解产物无毒。本文以聚乳酸-羟基乙酸共聚物(PLGA)为例介绍磁性聚合物载药微球的磁靶向性及磁控制释放研究。Pou Ponneau通过乳化法,制备了包裹阿霉素和铁钴纳米颗粒的磁性微球,该微球具有高饱和磁化强度(Ms=72 emug-1)[13]。肝动脉注射磁性载药微球后,可实现了对肝左动脉的栓塞操纵,为栓塞化疗奠定了基础。Liu等[14]通过乳化法制备了包裹氧化铁的磁性微球,在交变磁场作用下5 min内可以升高5℃。磁性微球表面的马来酰亚胺基团与荧光的巯基基团进行共价键结合后,可将靶向抗体偶联到磁性微球表面,实现靶向功能,成为靶向磁热疗载体。Kong等[15]制备包裹氧化铁和喜树碱的聚合物磁性微球,研究了材料的稳定性、细胞吞噬过程、及在交变磁场下的药物可控释放行为。Yang等[16]采用双乳化溶剂蒸发法制备了四氧化三铁掺杂的聚合物膜壳,包裹精氨酸的磁性微囊,在交变磁场作用下,外部的双氧水能进入微囊内部和精氨酸反应,生成一氧化氮(NO),验证了制备的磁性微囊具有影像和治疗一体化潜在功能。Chiang等[17]采用同样的方法制备囊壁掺杂氧化铁,内部包裹有阿霉素的磁性载药中空微球,通过交变磁场的作用,实现了对磁性载药中空微球的脉冲释放。

2.3 磁性聚合物电解质微囊药物载体

聚合物电解质微囊是基于模板通过层层自组装(LBL)构建的微囊,可通过组装过程来调节囊壁的渗透性,这类微囊也广泛用于药物载体研究。结合磁性纳米颗粒的聚合物电解质微囊的多功能化研究已成为新热点[18]。Lu等[19]通过层层自组装在囊壁上结合Co@Au纳米颗粒,内部包裹大分子药物模型(FITC-DEX),研究了在交变磁场作用磁性聚合物电解质微囊囊壁的渗透性。Hu等[20]也通过层层自组装将磁性纳米颗粒组装到聚合物电解质囊壁上,研究了该微囊的荧光和阿霉素释放行为,观察到在交变磁场作用下微囊囊壁的开孔变化过程及30 min后微囊破裂。Liu等[21-22]以磁性海藻酸钠微球为模板,制备了包裹氧化铁和阿霉素的载药磁性微囊,并结合温敏性量子点实时观察磁场作用下磁性微囊升温变化,研究交变磁场对微囊内药物释放行为的影响。聚合物电解质微囊的囊壁具有纳米孔洞,对包裹小分子药物有一定的限制,Katagiri等[23]通过脂质膜包裹磁性聚合物电解质微囊来改善其渗透性,在囊壁上通过Pd催化合成氧化铁纳米颗粒,研究了磁性微囊在交变磁场下的可控释放行为,观察到在交变磁场作用后,微囊的破裂过程。Zebi等[24]通过结合量子点(CdTe)和氧化铁纳米颗粒制备了磁性微囊,研究了静磁场对磁性微囊细胞吞噬量的影响,发现磁场可增加磁性微囊与细胞的接触,从而提高细胞对微囊的摄取量。

2.4 其他药物载体

聚合物囊泡(polymersome)是基于脂质体发展起来的一种新型载药体系,其通过双嵌段聚合物在溶液中自组装形成囊泡结构,将磁性纳米颗粒结合在囊壁上,在交变磁场作用下,磁性颗粒升温破坏囊壁,从而实现控制药物释放[25]。磁性凝胶是在凝胶中掺杂磁性纳米颗粒,在交变磁场作用下,纳米颗粒升温引起凝胶分子的结构变化或破坏,从而实现控释药物释放[26]。多孔硅结合磁性纳米颗粒作为药物载体也被广泛研究,多孔硅结合药物可采用包裹的方式[27],或者以磁性微球作为模板包裹二氧化硅[28],然后去除内部模板后装填药物,得到多孔硅药物载体。在磁场作用下磁性纳米颗粒升温破坏包裹层,从而达到控制药物释放的目的。

各种负载磁性纳米颗粒的载药微囊在材料制备和性能研究方面已经取得了很大的进展,并逐渐成为一个新的研究热点。我们对文中涉及的磁性载药微囊在动物肿瘤模型中的应用进行了简单的总结(见表1)。

表1 负载磁性纳米颗粒的载药微囊在动物肿瘤模型中的应用Table 1 Application of drug-loaded magnetic nanoparticles modified microcapsules in animal tumor model

3 结语

尽管磁响应性药物载体在磁靶向、化疗和热疗等方面取得了一些重要进展,但仍需重点解决下列问题:1)磁性药物载体制备过程中药物的包封率及磁纳米颗粒的含量问题,这是提高载体性能的前提;2)磁性纳米颗粒的饱和磁化强度、稳定性及体内因素对磁靶向性的影响,这是提高疗效的核心。解决这些问题,是发展以磁靶向为手段实现联合热化疗的研究方向。

1 Allen TM,Culli PR.Drug delivery systems:Entering the mainstream[J].Science,2004,303(5665):1818-1822.

2 Lee JH,Kim JW,Cheon J.Magnetic nanoparticles for multi-imaging and drug delivery[J].Mol Cells,2013,35(4):274-284.

3 Widder KJ,Senyel AE,Scarpelli GD.Magnetic microspheres:a model system of site specific drug deliveryin vivo[J].Proc Soc Exp Biol Med,1978,158(2):141-146.

4 Kumar CS,Mohammad F.Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery[J].Adv Drug Deliv Rev,2011,63(9):789-808.

5 Babincova M,Altanerova V,Lampert M,et al.Site-specific in vivo targeting of magnetoliposomes using externally applied magnetic field[J].Z Naturforsch C,2000,55(3-4):278-281.

6 Babincova M,Cicmanec P,Altanerova V,et al.AC-magnetic field controlled drug release from magnetoliposomes:design of a method for site-specific chemotherapy[J].Bioelectrochemistry,2002,55(1-2):17-19.

7 Bealle G,Di CR,Kolosnjaj Tabi J,et al.Ultra Magnetic Liposomes for MR Imaging,Targeting,and Hyperthermia[J].Langmuir,2012,28(32):11834-11842.

8 Chen YJ,Bose A,Bothun GD.Controlled Release from Bilayer-Decorated Magnetoliposomes via Electromagnetic Heating[J].ACS Nano,2010,4(6):3215-3221.

9 Amstad E,Kohlbrecher J,Muller E,et al.Triggered Release from Liposomes through Magnetic Actuation of Iron Oxide Nanoparticle Containing Membranes[J].Nano Lett,2011,11(4):1664-1670.

10 Nobuto H,Sugita T,Kubo T,et al.Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet[J].Int J Cancer,2004,109(4):627-635.

11 Mikhaylov G,Mikac U,Magaeva AA,et al.Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment[J].Nat Nanotechnol,2011,6(9):594-602.

12 Yoshida M,WatanabeY,Sato M,et al.Feasibility of chemohyperthermia with docetaxel-embedded magnetoliposomes as minimally invasive local treatment for cancer[J].Int J Cancer,2010,126(8):1955-1965.

13 Pouponneau P,Leroux JC,Soulez G,et al.Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation[J].Biomaterials,2011,32(13):3481-3486.

14 Liu XQ,Novosad V,Rozhkova EA,et al.Surface functionalized biocompatible magnetic nanospheres for cancer hyperthermia[J].IEEE T Magn,2007,43(6):2462-2464.

15 Kong SD,Sartor M,Hu CM,et al.Magnetic field activated lipid-polymer hybrid nanoparticles for stimuli-responsive drug release[J].Acta Biomater,2013,9(3):5447-5452.

16 Yang F,Chen P,He W,et al.Bubble Microreactors Triggered by an Alternating Magnetic Field as Diagnostic and Therapeutic Delivery Devices[J].Small,2010,6(12):1300-1305.

17 Chiang WL,Ke CJ,Liao ZX,et al.Pulsatile Drug Release from PLGA Hollow Microspheres by Controlling the Permeability of Their Walls with a Magnetic Field[J].Small,2012,8(23):3584-3588.

18 DeshmukhPK,Ramani KP,Singh SS,et al.Stimuli-sensitive layer-by-layer(LbL)self-assembly systems:Targeting and biosensory applications[J].J Control Release,2013,166(3):294-306.

19 Lu ZH,Prouty MD,Guo ZH,et al.Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles[J].Langmuir,2005,21(5):2042-2050.

20 Hu SH,Tsai CH,Liao CF,et al.Controlled Rupture of Magnetic Polyelectrolyte Microcapsules for Drug Delivery[J].Langmuir,2008,24(20):11811-11818.

21 Liu JW,Zhang Y,Yan CZ,et al.Synthesis of Magnetic/Luminescent Alginate-Templated Composite Microparticles with Temperature-Dependent Photoluminescence under High-Frequency Magnetic Field[J].Langmuir,2010,26(24):19066-19072.

22 Liu JW,Zhang Y,Wang CY,et al.Magnetically Sensitive Alginate-Templated Polyelectrolyte Multilayer Microcapsules for Controlled Release of Doxorubicin[J].J Phys Chem C,2010,114(17):7673-7679.

23 Katagiri K,Nakamura M,Koumoto K.Magnetoresponsive Smart Capsules Formed with Polyelectrolytes,Lipid Bilayers and Magnetic Nanoparticles[J].ACS Appl Mater Interfaces,2010,2(3):768-773.24 Zebli B,Susha AS,Sukhorukov GB,et al.Magnetic targeting and cellular uptake of polymer microcapsules simultaneously functionalized with magnetic and luminescent nanocrystals[J].Langmuir,2005,21(10):4262-4265.

25 Oliveira H,Perez-Andres E,Thevenot J,et al.Magnetic field triggered drug release from polymersomes for cancer therapeutics[J].J Control Release,2013,169(3):165-170.

26 Li YH,Huang GY,Zhang XH,et al.Magnetic Hydrogels and Their Potential Biomedical Applications[J].Adv Funct Mater,2013,23(6):660-672.

27 Chen PJ,Hu SH,Hsiao CS,et al.Multifunctional magnetically removable nanogated lidsofFe3O4-capped mesoporous silica nanoparticles for intracellular controlled release and MR imaging[J].J Mater Chem,2011,21(8):2535-2543.

28 Kong SD,Zhang WZ,Lee JH,et al.Magnetically Vectored Nanocapsules for Tumor Penetration and Remotely Switchable On-Demand Drug Release[J].Nano Lett,2010,10(12):5088-5092.

(2013-10-09收稿)

(2013-11-13修回)

Recent development in preparation and application of drug-loaded magnetic nanoparticle-modified microcapsules

Ning GU;E-mail:guning@seu.edu.cn
State Key Laboratory of Bioelectronics,Jiangsu Key Laboratory for Biomaterials and Devices,School of Biological Science and Medical Engineering,Southeast University,Nanjing 210096,China.
This work was supported by the National Important Science Research Program of China(No.2011CB933503)and the National Natural Science Foundation of China(No.31000453).

Coupled magnetic nanoparticles in the microcapsule structure,such as magnetic microcapsules,can be delivered in specific organism or tissues under magnetic field exposure.Thus,the microcapsules can achieve active targeting functions by manipulating the magnetic field.Based on the magnetic microcapsules,the antitumor drugs can also be loaded to realize magnetic response,which gives microcapsules sustained and controlled release advantages.To date,the drug microcapsules carrying magnetic nanoparticles have become promising novel delivery carriers for the treatment of tumor diseases.This paper mainly reviews the method of preparation of the magnetic nanoparticle-coupled microcapsules,including liposomes,polyelectrolyte microcapsules,and polymer microspheres.The basic research progress of these microcapsules as anticancer drug carriers for the tumor therapy was also reviewed.

magnetic nanoparticles,magnetic targeting,magnetic microcapsules,controlled release,hyperthermia combined chemotherapy

东南大学生物科学与医学工程学院,江苏省生物材料与器件重点实验室,生物电子学国家重点实验室(南京市210096)

*本文课题受国家重大科学研究计划项目(编号:2011CB933500)和国家自然科学基金项目(编号:31000453)资助

顾宁 guning@seu.edu.cn

10.3969/j.issn.1000-8179.20131766

Kun FANG,Fang YANG,Ning GU

(本文编辑:周晓颖)

猜你喜欢
载药微囊脂质体
微囊泡在肿瘤中的研究进展
BMP⁃2缓释型PLGA微囊作为引导骨再生支架的初步研究
Callispheres载药微球与传统支气管动脉化疗栓塞治疗不可切除的中央型鳞癌的临床疗效对比:一项回顾性研究
PEG6000修饰的流感疫苗脂质体的制备和稳定性
DC-Chol阳离子脂质体佐剂对流感疫苗免疫效果的影响
超临界流体技术在眼科生物医药领域的应用
脂质体研究进展及制备方法
铜绿微囊藻对锌、镉胁迫的生理响应
131I标记壳聚糖/明胶—拓扑替康载药膜对SK—OV—3腹腔荷瘤鼠的治疗效果
静止水体中微囊藻属迁移轨迹的数值模拟