周 丽
(安徽农业大学 数学系, 安徽 合肥 230031)
Kuramato-Tsuzuki方程的有限差分法
周 丽
(安徽农业大学 数学系, 安徽 合肥 230031)
对二维Kuramoto-Tsuzuki方程混合初边值问题建立了线性化Grank-Nicolson格式,证明了差分格式解存在的唯一性、收敛性,并证明了收敛阶为O(τ+h2)。
Kuramoto-Tsuzuki方程; 差分格式; 收敛性
Kuramoto-Tsuzuki方程描述了在歧点附近两个分支的行为状况[1],文中讨论混合初边值问题的Kuramoto-Tsuzuki方程[2]的数值解
(1)
(2)
(3)
对方程(1)-方程(3)建立如下线性化Grank-Nicolson格式:
(4)
(5)
首先引入下面的Brouwer不动点定理[8-9]:引理1 设(H,(·,·)H)是有限维内积空间,‖·‖H是其上定义的范数,映射g:H→H是连续的,若存在α>0,使得对任意z∈H,‖z‖H=α,有Re(g(z),z)H≥0成立,则存在z*∈H,使得‖z*‖≤α时g(z*)=0。
证明 将方程(4)改写成:
做映射G:CM+1→CM+1
对上式两边同时取实部得
解的唯一性用数学归纳法可证,证明略。
证明 由于
其中
(6)
(7)
假设u(x,t)在Ω×(0,T]上有界,则
由引理3知
由引理3
两边同时取实部得
当τ充分小时,由离散Gronwall不等式得到
命题得证。
[1]YKuramoto,TTsuzuki.Ontheformationofdissipativestructiveinreaction-diffusionsystems[J].ProgrTheorPhys.,1975,54:689-699.
[2] Tingchun Wang, Boling Guo. A robust semi-explicit difference scheme for the Kuramoto-Tsuzuki equation [J]. J.Compu-tational and Applied Mathematics,2009,233:878-888.
[3] Z Z Sun. A linearized difference for the Kuramato-Tsuzuki equation [J]. Comput Math.,1996,14:1-7.
[4] Z Z Sun. OnL∞convergence of a linearized difference scheme for the Kuramato-Tsuzuki equation [J]. Nanjing Univ. J.Math. Biquarterly.,1997,14(1):5-9.
[5] Z Z Sun. A generalized Box scheme for the Kuramato-Tsuzuki equation[J]. J.Southeast Univ.,1996,26(1):87-92.
[6] G Z Tsertsvadze. On tne convergence of a linearized difference scheme for the Kuramato-Tsuzuki equation and for systems of reaction-diffusion type[J]. Zh Vychisl Mat. Fiz.,1991,31:698-707.
[7] Z Z Sun, Q D Zhu. On tsertsvadze’s difference scheme for the Kuramato-Tsuzuki equation[J]. J.Comp., Appl., Math.,1998,98:289-304.
[8] G D Akrivis. Finite difference discretization of the cubic schrodinger equation[J]. IMA J.Numer Anal.,1993,13:115-124.
[9] G D Akrivis, V A Dougalis, O A Karakashian. On fully discrete galerkin methods of second-order temporal accu-racy for the nonlinear schrodinger equation[J]. Numer Math.,1991,59:31-53.
A finite difference scheme for Kuramoto-Tsuzuk equation
ZHOU Li
(Department of Mathematics, Anhui Agricultural University, Hefei 230031, China)
A linearized Crank-Nicolson finite difference scheme is studied for the mixed initial boundary of two-dimensional Kuramoto-Tsuzuki equations. Existence, uniqueness of the solutions are proved and the convergence order isO(τ+h2).
Kuramoto-Tsuzuki equation; difference scheme; convergence.
2014-06-02
安徽农业大学青年科学基金资助项目(2011zr007)
周 丽(1981-),女,汉族,安徽蚌埠人,安徽农业大学讲师,硕士,主要从事偏微分方程的数值解方向研究,E-mail:lizhou@ahau.edu.cn.
O 241.82
A
1674-1374(2014)05-0585-04